-
The Top 6 Reasons !
Kafka Projects Fail

(and How to Overcome Them)

John Santaferraro, CEO and Head Research Analyst of Ferraro Consulting

(9 CONFLUENT | FERRARO Consulting confluent.io

https://www.confluent.io/home/

Table of Contents

Introduction

Kafka Risk 1
Lack of Expertise and Resources

Kafka Risk 2
Difficulty Moving from Development to Production

Kafka Risk 3
Unpredictable Outages and Downtime

Kafka Risk 4
Difficulty Securing Streaming Data

Kafka Risk 5
Lack of Governance

Kafka Risk 6
Difficulty Scaling

The Undeniable Benefit of
Confluent vs. Apache Kafka®

(% CONFLUENT

10

Introduction

THE DIGITAL DELUGE of the last decade has elevated
streaming data to a place of prominence in the IT landscape.
According to the Apache Foundation, Apache Kafka® is used
by thousands of companies and over 80% of the Fortune 100,
including companies like Box, Goldman Sachs, Target, Cisco,
Intuit, and more. It has become the de facto choice for data

in motion.

Kafka is an open source distributed messaging system
designed to handle large-scale data streams using events.
With more than 1,000 use cases and counting, Kafka

is proving to be far more than a traditional messaging
platform; it has become the central nervous system of
countless IT ecosystems. Organizations deploy Kafka for
their critical, real-time transactions, including payment
processing, financial transaction monitoring, and fraud and
risk detection. Kafka provides an extensive set of tools for
pub-sub messaging, stream processing, system connectivity,
and ETL tooling.

Although Kafka possesses powerful and transformative
capabilities, it does require dedicated personnel, resources,
and infrastructure to set up, configure, monitor, and manage.
Multiple clusters with high streaming data volume adds
additional complexity, especially as you onboard new business
processes, applications, and use cases.

(% CONFLUENT

Kafka is a distributed system, and like most distributed
systems, operating it requires careful consideration of
networking, resource allocation, faults, and recovery. While
it is relatively easy to get started in using Kafka, building

a reliable and trustworthy Kafka service can take many
weeks or even months. And this isn't unique to Kafka—
introducing and self-managing any essential service into
your organization takes significant time, effort, and money
to do well. The unavoidable fact is that every minute spent
building out foundational components and performing
management tasks takes time away from building rich
customer experiences and improving your business efficiency
with data-driven operations.

There are six common reasons why Kafka projects fail:
Lack of expertise and resources
Difficulty moving from development to production
Unpredictable outages and downtime
Difficulty securing streaming data
Lack of governance
Difficulty scaling

This report explores each of these six reasons.

https://kafka.apache.org/powered-by
https://kafka.apache.org/powered-by
https://www.confluent.io/blog/what-is-an-event-in-the-apache-kafka-ecosystem/
https://developer.confluent.io/learn-kafka/architecture/get-started/
https://developer.confluent.io/learn-kafka/architecture/get-started/

Kafka Risk 1

Lack of Expertise and Resources

DEVELOPING, DEPLOYING, MONITORING, scaling, and implementing Kafka solutions requires a high degree
of expertise. Installation can be straightforward, but architecting these event-driven data pipelines
and deploying them for enterprise use often requires outside resources, such as consultants who

are familiar with modern streaming architectures. Insufficient understanding of Kafka's concepts,
architecture, and best practices can lead to poor implementation decisions. The overall lack of
resources and expertise falls into three areas: installation, development, and operations.

Installation

Despite straightforward installation, some failures

occur because hardware and network configurations are
underprovisioned. But overprovisioning carries a risk of
overspending for underutilized resources. There are many
decisions to be made regarding a physical machine or a
cloud provider, including all of the intricacies of each option.
The network needs to be configured properly for streaming
data, especially for potential unforeseen peaks. In addition,
hardware and network security often operate on separate
systems.

Development

For developers new to working with distributed systems,
there are many new complex concepts to understand,
including partitioning, replication, fault tolerance, and
consistency. In addition, Kafka has its own ecosystem that
must be learned, with concepts such as brokers, clusters,
partitions, topics, logs, producers, and consumers. Once
developers understand the architecture, they will need to
learn how to optimize performance by understanding the
trade-offs in order to make informed decisions based on
factors like message throughput, latency, disk space, and
network bandwidth.

Kafka itself is also an open source project with many
powerful tools, but it isn't a complete data streaming
platform. Connectors, security and governance features,
geo-replication tools, and other functionalities need to be
integrated from third parties or custom-built in-house. For
example, metadata catalogs, role-based access control, and
monitoring tools are not provided as part of the core Kafka
project, and must be developed and integrated on your
own. The development of these additional components can
become increasingly time-consuming and costly.

(% CONFLUENT

Operations

Once in production, ongoing operations and maintenance
are essential for a Kafka project's success. Establishing
effective monitoring practices is necessary to capture
important metrics, such as message throughput, latency,
and resource utilization. Administrators struggle to set up
alerts for proactive identification and resolution of issues to
ensure the smooth functioning of Kafka clusters. While there
are third-party tools built for monitoring Kafka operations,
the challenge comes in trying to unify the monitoring of
hardware, network, storage, and compute. Without a
unified view across the entire system, it is difficult to detect
faults, identify the root cause, and understand the impact
of potential failures. Plus, regular maintenance tasks will be
necessary such as log retention management, cleaning up old
data, and optimizing resource utilization.

https://www.confluent.io/blog/understanding-and-optimizing-your-kafka-costs-part-2-development-and-operations/#platform-development

Kafka Risk 2

Difficulty Moving from Development

to Production

THE PROCESS OF moving streaming data projects from development or proof of concept to production
is always more challenging than anticipated, especially for companies new to Kafka. Common
mistakes include development and testing without the necessary production components to properly
simulate an enterprise environment. Organizations attempting to manually build or piece together
solutions with configuration management, high availability, security and access control, performance
testing, and monitoring are at high risk for extensive delays and possible failure.

Configuration Management

Configuring Kafka for production involves fine-tuning
various Kafka parameters such as buffer sizes, replication
factors, retention policies, and security settings. Ensuring
that the configuration is optimized for performance,
scalability, and security can be challenging, as it requires a
deep understanding of Kafka's internals and the specific
requirements of your production environment compared to
your test environment.

High Availability and Fault Tolerance

Kafka deployments in production should be designed

for high availability and fault tolerance. This involves
configuring replication to ensure data is replicated across
multiple brokers, and implementing proper disaster recovery
mechanisms. Teams need to implement strategies for
managing broker failures, handling leader elections, and
maintaining data consistency across replicas. However, third-
party data replication tools for Kafka such as Apache Kafka
MirrorMaker 2.0 require provisioning, tuning, and managing
extra software components or distributed systems to copy
messages from one cluster to another.

Security and Access Control

In a production environment, open source Kafka needs to
be secured to protect against unauthorized access and
data breaches. However, configuring secure communication
channels, enabling authentication and authorization
mechanisms, such as access control lists (ACLs), and
managing access control policies can be complex—especially
on top of managing the underlying Kafka infrastructure.

(% CONFLUENT

Performance Testing and Optimization

The biggest challenge of testing comes in setting up an
environment that adequately mimics the ultimate production
environment. It is complicated to create scalability and
performance testing to ensure your Kafka setup can handle
the anticipated data volumes and load in a production
environment. This may require testing the scalability of
Kafka clusters and optimizing configurations to achieve ideal
performance. With additional data coming into a production
environment, it is important to load balance. Achieving an
even distribution of message traffic across a cluster to avoid
overloading specific brokers requires careful monitoring and
dynamic partition reassignment. It is equally challenging

to rebalance partitions and redistribute workloads without
impacting ongoing data processing and delivery.

Monitoring

Monitoring the health and performance of your Kafka

cluster in production is vital for identifying and resolving
issues proactively. While observability itself is not difficult,
monitoring Kafka clusters to visualize Kafka operations,
alongside all the infrastructure, is difficult. Typically, this
requires leveraging a third-party tool such as Prometheus

or Grafana to collect and help visualize relevant metrics and
configuring alerts based on thresholds or anomalies. Without
this cross-platform view, it is impossible to do root cause
analysis, impact analysis, or predictive maintenance.

https://www.confluent.io/resources/white-paper/best-practices-disaster-recovery/
https://www.confluent.io/resources/white-paper/best-practices-disaster-recovery/

Kafka Risk 3

Unpredictable Outages and Downtime

DUE TO THE distributed nature of Kafka, many projects are susceptible to various risks that can result

in unpredictable outages and downtimes. There are multiple challenges with running Apache Kafka on
your own, requiring hundreds of man hours of development time, just trying to stitch together reliable
infrastructure, network, and software so they all work together. In addition, the amount of time spent
on break and fix issues consumes valuable cycles that could be devoted to delivering a project on time

and on budget.

Data Integrity and Replication Challenges

Because distributed computing requires frequent replication
of data, the chance for errors is multiplied. With Kafka, data
integrity and replication across multiple clusters is crucial for
fault tolerance and reliability. If data replication mechanisms
fail or encounter inconsistencies, it can lead to data loss,
inconsistencies across partitions, and potential service
disruption.

Complexity of Infrastructure, Network, and
Software

The complexity of manually deploying Kafka with high
availability and resiliency is compounded by the matrix

of infrastructure, network, and software required for on-
premises deployments. Development requires expertise

in compute, storage, and networking, along with Kafka.
Without deep collaboration among the different technology
experts, Kafka deployments will remain unstable. Ensuring
proper load balancing, network partition tolerance, and fault
tolerance requires robust network configurations, hardware
setups, and fault-tolerant architectures.

(% CONFLUENT

Improper Tuning of Timeouts

Timeouts are typically used in communication between Kafka
clients and brokers or between different components in the
Kafka ecosystem. If timeouts are set too low, it can result in
premature termination of operations, leading to message
loss or disruptions in data processing. On the other hand,
setting timeouts too high can lead to delays in detecting

and recovering from failures, potentially causing prolonged
downtime. Configuring appropriate timeouts and handling
timeout-related errors effectively is crucial to maintain the
stability and reliability of Kafka projects.

Configuration Errors

Incorrect or misconfigured settings within Kafka clusters,
such as replication factor, partition allocation, or resource
allocation, can lead to performance degradation or even
complete failures. Improper configuration changes without
adequate testing can introduce instability and downtime.

Kafka Risk 4

Difficulty Securing Streaming Data

EVEN THOUGH KAFKA continues to improve security options for users, ensuring data privacy and
protection for streaming data can be challenging for most organizations. Unfortunately, not all
security experts understand streaming data and not all streaming data experts understand security.

The complexity of deploying enterprise-grade security requires both Kafka and security expertise, a
combination that is rare and in high demand.

To better understand the challenges of streaming data security, we must first understand the full

set of security requirements. Data security should protect digital assets from unauthorized access or
loss of any kind. Specifically, it should include a full set of security functions including authentication,
access control, encryption, key management, configuration assurance, monitoring, and auditing. The

risks involved in properly setting up security include the following:

Inadequate Authentication and Access Control Insufficient Encryption

Failing to implement proper authentication mechanisms can Lack of encryption measures, such as SSL/TLS encryption,

result in unauthorized access to Kafka topics or brokers. This
can lead to unauthorized data consumption, tampering, or
leakage.

can expose streaming data to eavesdropping and
interception by malicious entities. Ensuring end-to-end
encryption in a distributed environment, where data flows

across multiple components and networks, is especially

difficult.
Improper Key Management

Encryption in Kafka often relies on key-based algorithms.
Inadequate key management practices, such as weak key
generation, improper storage, or inadequate rotation, can
weaken the overall security posture. Compromised keys can
result in unauthorized access or decryption of sensitive data.

Lack of Monitoring and Auditing

Insufficient monitoring and auditing of security-related
events in Kafka can make it challenging to detect and
respond to potential security breaches. Without proper
visibility into access patterns, authentication failures, or
. . . . suspicious activities, it becomes difficult to identify and
Misconfiguration of Security Features mitigate security risks promptly.
Misconfigurations, such as incorrect SSL/TLS certificate

setup, incorrect authentication mechanisms, or improper

access control lists (ACLs), can inadvertently introduce

vulnerabilities. Many organizations struggle to set up

the rigorous reviews and validations necessary to ensure

compliance of Kafka security configurations.

(% CONFLUENT

Kafka Risk 5
Lack of Governance

UNGOVERNED KAFKA ENVIRONMENTS make it difficult to find, understand, and trust streaming data. It
is not uncommon for developers to create new topics without documenting the source of the dataq,
the data owners, proper definitions for data transformations, and use cases, leaving data consumers
baffled. Even if some topics are well governed, the mixture with ungoverned data brings risk.

As the number of topics grows into hundreds and even thousands, the risks increase exponentially due
to added dependencies and resource conflicts. The lack of governance leads to project failure when
issues with data quality, consistency, and explainability abound.

While the tools to build and maintain long-term, compatible event streams do exist, the tools to safely
and effectively share these streams across teams for more widespread use do not. This missing piece
is extremely problematic for event-driven microservices built by small, disparate teams. This issue is
compounded with scaling, causing confusion among producers and consumers of data.

While most Kafka project leaders set out to govern streaming data, many fall short of true

governance, which includes all of the following:

Data Consistency

When organizations fail to implement data cleansing across
the entire data ecosystem, it results in inconsistent data.
Inconsistency breeds inaccurate analysis and insight.

Data Quality

The number one governance challenge is achieving the high-
speed data cleansing necessary for extracting value from
streams. There is no built-in mechanism to enforce data
validation rules, data formats, or data schema evolution.

Data Lineage

Without a complete understanding of where data originates
and how data has been manipulated, it is impossible to derive
meaningful intelligence.

Data Policies and Standards

Consistent and appropriate handling of data is impossible
without well-defined guidelines and rules for data
management, including data classification, access controls,
data retention, and privacy regulations.

(% CONFLUENT

Data Stewardship

When organizations fail to identify data owners, it is
impossible to implement the policies and standards necessary
to operate a well-governed data practice.

Data Catalog

Missing or incomplete data catalogs make it difficult to

find and understand data in the context of the greater
organization. Kafka does not have a centralized repository or
catalog to track and manage metadata information such as
topic schemas or message formats.

Kafka Risk 6

Difficulty Scaling

BECAUSE KAFKA COVERS a broad range of use cases, from messaging all the way to data integration and
data pipelines, opportunities abound to scale and expand use. However, scaling Kafka often requires
manual intervention, resulting in the following challenges:

Globalization

When scaling to new regions, balancing workloads and
synchronizing data across replicated clusters presents its own
challenges, especially when considering different data privacy
and security requirements in different regions. Furthermore,
managing data replication within Kafka means ensuring
consistency across replicas, synchronizing data updates, and
handling replica failures.

Performance Bottlenecks

As the data load increases, resource conflicts arise, and
Kafka clusters may face performance bottlenecks. These
bottlenecks can occur at various levels, such as network
bandwidth, disk I/0, or CPU utilization. Identifying and
mitigating these bottlenecks while maintaining optimal
throughput and latency can be challenging. The balance of
infrastructure and performance upgrades is difficult.

Long-Running Topics

When there is an increase in the number of topics running
over an extended period of time, it impacts both storage
and data retention. Storage requires compression and other
optimization strategies. In addition, when consumers lag
behind producers, data gets backed up and can easily be lost
or duplicated.

Maintenance

Maintenance at scale requires understanding of cluster
health, disk utilization, and network latency in complex

Kafka environments, a skillset that is difficult to find. Regular
maintenance tasks like backups, upgrades, configuration
adjustments, and resource allocation adjustments require
visibility, monitoring, and analysis solutions to ensure stability.

(% CONFLUENT

Orchestration

As data streams proliferate and Kafka becomes the

central nervous system of the enterprise, the complexity of
managing competing workloads outgrows human capabilities,
especially when different departments in the business are
competing for resources. Orchestration requires a rich set of
centralized metadata to guide the automation of resource
allocation, conflict resolution, and error correction.

Utilization Optimization

As Kafka streams multiply, utilization remains a mystery to
many organizations. The lack of centralization in on-premises
deployments leads to overprovisioning, underprovisioning,
and data loss. Optimization for either cost or performance
can be difficult.

Repairs

Many organizations expanding the use of Kafka spend

an inordinate amount of time on break and fix issues.
Inadequate standardization and inconsistent configurations
compound the matter further.

The Undeniable Benefit

Confluent vs. Apache Kafka

USING A FULLY managed platform to address open source complexity is particularly useful for Kafka
deployments. There are several areas where Confluent has built technology around Kafka to reduce
risk, speed time to streaming excellence, and create value for customers. Confluent provides a truly
cloud-native experience, completing Kafka with a holistic set of enterprise-grade features to unleash

developer productivity, operate efficiently at scale, and meet all of your architectural requirements

before moving to production.

Here's a quick rundown on the specifics of ensuring success upfront for event-driven data streaming projects.

OVERCOMING RISK 1

Elimination of Resource
and Expertise Challenges

Confluent Cloud eradicates time-consuming cluster
provisioning and configuration, which are common roadblocks
for teams moving beyond a Kafka proof of concept. Instead
of putting internal resources to work maintaining Kafka
clusters, Confluent's fully managed, cloud-native platform
removes any operational overhead burden. This means

you can get started with your Apache Kafka deployment

in minutes. Confluent draws its experience from more

than 1 million cumulative hours of Kafka expertise and
operating more than 30,000+ clusters across thousands of
organizations.

OVERCOMING RISK 3

Unpredictable Outages
and Downtime

Here, the SLA that Confluent Cloud brings—99.99%
uptime—relieves a lot of the worry and unpredictability of

a self-managed Kafka deployment. Built-in capabilities like
multi-availability zone clusters and automated Kafka patches
also help alleviate downtime concerns. Better yet, Confluent
Cloud supports multi-region deployments, allowing you to
replicate your Kafka data across multi-availability zones

or cloud regions. So in an event of an outage in one region,
Confluent Cloud will automatically fail over to another region,
minimizing your downtime.

(% CONFLUENT

OVERCOMING RISK 2

Quickly Move from
Development to Production

Confluent Cloud handles all operational aspects of Kafka

for you, including provisioning, scaling, monitoring, and
maintenance, with features like connectors, stream
processing, governance, and more out of the box. Developers
also don't need to worry about production necessities like
disaster recovery because Confluent Cloud ensures high
availability and resilience by handling the replication and data
durability aspects of Kafka. Resources can also be quickly
spun up and turned down, giving teams access to right-

sized testing environments and streamlining the move from
development to production.

OVERCOMING RISK 4

Securing Your Data Streams

Confluent Cloud offers robust security measures to

ensure the confidentiality, integrity, and availability of your
Kafka data. It ensures encryption at rest and in transit,
safeguarding your data from unauthorized access through
security features such as role-based access control and audit
logs. It complies with industry standards and certifications,
and offers fine-grained security monitoring and threat
detection.

https://www.confluent.io/apache-kafka-vs-confluent/
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/confluent-cloud/security/

OVERCOMING RISK 5

Acceleration and Assurance
of Governance

Stream Governance is the industry’s only fully managed data
governance suite for Apache Kafka. With three integrated
components—stream quality, stream catalog, and stream
lineage—development teams can bring the power of real-
time data streams to your business safely and confidently.

OVERCOMING RISK 6

Scaling Without Limits

Because Confluent Cloud is fully managed, you no longer
need to worry about the operational overhead (e.g.,
maintenance, Kafka upgrades, and patches) that comes with
scaling your Kafka deployment. Confluent Cloud also allows
you to easily scale your Kafka resources up and down based
on your requirements. You can adjust the capacity of your
clusters to handle increased data volumes, higher throughput,
or spikes in traffic.

ORGANIZATIONS THAT USE Confluent have launched their streaming projects into production over six months faster than with
Apache Kafka on their own, all while drastically reducing their day-to-day operational burdens, risks, and costs by up to 60%.
Confluent has reinvented Kafka so you can scale Kafka across your organization without the need to scale your teams.

Interested in learning more?

Contact us today to see how Confluent can help
ensure your success with Kafka and data streaming.

Or is your team ready to try Confluent?

Get Started for Free Today

(% CONFLUENT

https://www.confluent.io/product/stream-governance/
https://www.confluent.io/get-started/
https://www.confluent.io/contact/
https://www.confluent.io/get-started/
https://www.confluent.io/confluent-cloud/pricing/

