Debugging, Monitoring, and
Performance Tuning

Developing Applications with Google Cloud Platform

STACKDRIVER LOGGING, STACKDRIVER MONITORING, STACKDRIVER TRACE

DEBUGGING APPLICATION ERRORS

HARNESSING STACKDRIVER TRACE AND MONITORING

Version 2.0
Last modified: 2017-09-25 Go gle Cloud

Google Stackdriver is a multi-cloud service

Error Reporting @ Debugger @ Logging

Error notifications

Production debug snapshots Platform, system, and app logs
Error dashboard

Conditional snapshots Log search/view/filter
IDE integration Logs-based metrics

Q Monitoring e Trace

Platform, system, and app metrics ~ Latency Reporting .
Uptime/health checks Per-URL latency sampling

Dashboards
Alerts

Stackdriver enables debugging, monitoring, and diagnostics for applications that run
on Google Cloud Platform and AWS.

Stackdriver comprises features such as Stackdriver Logging, Stackdriver Monitoring,
Stackdriver Trace, Stackdriver Error Reporting, and Stackdriver Debug. These
diagnostics features are well-integrated with each other. This helps you connect and
correlate diagnostics data easily.

Stackdriver enables you to increase application reliability

Monitor GCP, AWS, Identify Trends, Reduce Monitoring Improve Fix Problems Faster
and Multi-Cloud Prevent Issues Overhead Signal-to-Noise

Environments Uptime and health checks
Spend less time correlating notify you quickly when

Visualize trends via flexible Reduce false positives and .
metrics, alerts, and logs endpoints become

Get the insight that you charts and dashboards. 8 Eleianoisptacances inaccessible to your users.
need with minimal Identify risks using scoring, S disparate systems. alerting designed for Drill down from alerts to A
configuration. Monitor anomaly detection, and oGy CLOIBEREIE modern distributed dashboards to logs and
hosted services and cloud prediction. tools. SHELEE: R
e traces to get to the root
architectures. cause quickly.

Stackdriver helps increase reliability by giving users the ability to monitor GCP and
multi-cloud environments and identify trends to prevent issues. With Stackdriver, you
can reduce monitoring overhead and noise to fix problems faster.

Debugging Your Application

Google Cloud

at
at
at
at
at
at
at
at

Parsed

Occurrences v

com.

com
com
com
com

Errors in the last hour

Stackdriver Error Reporting

Error

Stack trace sample

Raw

callbyreference.

.callbyreference.
.callbyreference.
.callbyreference.
.callbyreference.
com.
com.
com.

callbyreference.
callbyreference.
callbyreference.

demos

demos

demos

.markov.
demos.
demos .

markov.
markov.

.markov.
demos .
demos .

markov.
markov.

.markov.
demos .

markov.

Debug your application in development and production

679 IndexOutOfBoundsException: Index: 4, Size: 4
com.callbyreference.demos.markov.Markov.isPromising (Markov.java)

Jjava.lang.IndexOutOfBoundsException: Index: 4, Size: 4

Markov.isPromising f(Markov. java:76)

Markov.generate (Markov.java:

Template$MarkovDiv. generateBegin (Template.java:113)
Template.generate (Template.java:20)
Template.generate (Template.java:22)
Template.generate (Template.java:22)
MarkovTemplate.generate (MarkovTemplate.java:57)
MarkovServlet.doGet (MarkovServlet.java:115)

Google Cloud

With Stackdriver Error Reporting and Debugger, you can debug your applications in
development and also troubleshoot errors in production.

Error Reporting displays errors that have occurred in your applications. You can view
the stack trace to determine where the error occurred. Clicking the source code file in

the stack trace takes you to Stackdriver Debugger and the line of code that has a

problem.

For more information about Error Reporting, see
https://cloud.google.com/error-reporting/.

https://cloud.google.com/error-reporting/

—

€ Stackdriver Debugger
65 private boolean isPromising(List<Object> markers) {
66 if (markers.size() > 32)
67 return false;
68 Object m0 = markers.get(0);
69 Object m_1 = markers.get(markers.size() - 1);
70 if (m0 == m_1) {
71 return false;
72 }
73 Object ml = markers.get(l);
74 Object m2 = markers.get(2);
75 Object m3 = markers.get(3);

m Object m4 = markers.get(4);

71 if (m0 !=ml || mO !=m2 || mO !=m3 || mO != md
78 || m0 != markers.get(5)) {
79 return false;

Debugger automatically creates debug snapshots

You do not have to restart the

application to generate new debug

snapshots.

Expressions: (Optiona

Type an expression

Variables 10 ®! 2017-09-13 (08:38:22)
View request logs
» this
» markers
mo "fairytales. txt"
Call Stack

com. callbyreference.demos.markov.Markov. isP..

Markov. java: 76

Google Cloud

Debugger automatically creates a debug snapshot on the line that has the error.
When the application hits the line of code again, Stackdriver Debugger creates a
snapshot of the application’s state, including values of local variables. You can also
manually select other lines of code where debug snapshots would be helpful.

You do not have to restart the application to generate new debug snapshots. This
powerful feature of Stackdriver Debugger lets you inject logging information without
interfering with the normal function of the application.

For more information about Debugger, see https://cloud.google.com/debugger/.

https://cloud.google.com/debugger/

Logging

Google Cloud

Install Stackdriver Logging Agent to capture logs

Google Compute Engine Amazon EC2

You can install Stackdriver Logging Agent on Compute Engine and Amazon EC2
instances to stream logs from third-party applications into Stackdriver Logging. The
Logging agent is an application based on fluentd. When you write your logs to existing

log files such as syslog on your VM instance, the Logging agent sends the logs to
Stackdriver.

For more information, see https://cloud.google.com/logging/docs/agent/.

https://cloud.google.com/logging/docs/agent/

Stackdriver Logging is preconfigured in other compute
environments

Google Cloud Dataflow Google Cloud Functions

Google App Engine Flexible Google Container Engine
and Standard Environments

Cloud Dataflow, Cloud Functions, and App Engine have built-in support for Logging.
You can enable Logging on Container Engine by simply enabling a checkbox in the
Cloud Platform Console when you set up a container cluster.

Set up logs-based metrics and alerts

Q Stackdriver Logging and Monitoring

09:21:51.246GET2001.13 KB6 exampleapp/
- -[14/Sep/2017:09:21:51 -0700] "GET / HTTP/1.1" 200 1156 - "exampleapp"

"exampleapp-git.appspot.com" ms=6 cpu_ms=11 cpm_usd=1.2919299999999998e-7

loading_request=0 instance=some_instance_id app_engine_release=1.9.54

Expand all | Collapse all

{
httpRequest: {

status: 200

¥

Alert if HTTP_Success

Create custom o
metric is:

logs-based metric:

HTTP_Success Below 400 per second

for 5 minutes

In Stackdriver Logging, you can view your logs and search for particular types of
messages. You can create custom logs-based metrics and alerts based on these
metrics. The example shows the following:

® Alogs-based metric called HTTP_Success that filters all log messages with an
HTTP response code of 200

® An alert to notify you when the number of successful HTTP requests is below
400 per second for 5 minutes.

Monitoring and Tuning
Performance

Google Cloud

In this section, you will learn the following:
® Why itis important to monitor your application
® \What you need to monitor
® How to troubleshoot performance issues in development and production

Monitor to analyze long-term trends

Google Cloud

When you monitor your application and gather metrics, you can make improvements
to the design of your application, increase reliability, detect and fix security issues,
and reduce costs based on usage patterns.

Monitor to analyze long-term trends and answer questions such as the following:
® How fast is my database growing?

® How many users have | added in the last four quarters?

Images:
https://pixabay.com/en/stock-exchange-boom-economy-pay-2648118/

https://pixabay.com/en/stock-exchange-boom-economy-pay-2648118/

Monitor to compare results over time or between experimental
configurations

Monitor to compare results over time or between experimental configurations. For
example:

® s the site slower than it was last week?
® Are requests served faster with Apache or Nginx web server?

Images:
https://pixabay.com/en/balance-swing-equality-measurement-2108025/

https://pixabay.com/en/balance-swing-equality-measurement-2108025/

Monitor to raise alerts when something is broken or about to
be broken

Monitor to raise alerts when something is broken and should be fixed urgently or
something is about to be broken and can be addressed preemptively.

Images:
https://pixabay.com/en/attention-warning-sign-symbol-icon-2584482/

https://pixabay.com/en/attention-warning-sign-symbol-icon-2584482/

Monitor to perform ad hoc retrospective analysis

Google Cloud

Monitor to perform ad hoc retrospective analysis. For example, the latency for your
application just increased sharply; what else happened around the same time?

Images:
https://pixabay.com/en/analytics-charts-graphics-marketing-2618277/

https://pixabay.com/en/analytics-charts-graphics-marketing-2618277/

|dentify APIs and resources that you want to monitor

Examples

e Public and private endpoints
e Multi-cloud resources such as Compute Engine VM instances, Cloud
Storage buckets, Amazon EC2 instances, and Amazon RDS databases

—

Google Cloud

Identify APIs and resources that you want to monitor.

|dentify service-level indicators and objectives

Service-Level Indicator (SLI): Latency
Service-Level Objective (SLO): 99.9% of requests over 30 days have latency <100ms

A service-level indicator (SLI) is a quantitative measure of some aspect of a service.
An SLI might be a predefined metric or a custom metric such as a logs-based metric.

A service-level objective (SLO) is a target value or range of values for a service level.
SLOs should include tolerance for small variations. Absolute limits will result in noisy
pagers and require you to constantly tweak thresholds.

For example, latency is a service-level indicator. You can set a service-level objective
indicating that 99.9% of requests over 30 days have latency <100ms.

Images:
https://pixabay.com/en/gauge-icons-performance-1294568/

https://pixabay.com/en/gauge-icons-performance-1294568/

Create dashboards that include four golden signals

Traffic Errors Saturation

After you identify the resources to monitor and define service-level indicators and
objectives, you can create dashboards to view metrics for your application. Create
dashboards that include the following golden signals:

e Latency: Latency is the amount of time it takes to serve a request. Make sure
to distinguish between the latency for successful and unsuccessful requests.
For example, an HTTP 500 error that occurs due to a loss of connection to a
database or another backend service might be served very quickly; however,
because an HTTP 500 error indicates a failed request, including 500 errors in
your overall latency might result in misleading metrics.

e Traffic: Traffic is a measure of how much demand is placed on your system. It
is measured as a system-specific metric. For example, web server traffic is
measured as the number of HTTP/S requests per second. Traffic to a NoSQL
database is measured as the number of read or write operations per second.

e Errors: Errors indicate the number of failed requests. Criteria for failure might
be any of the following:

o An explicit error such as an HTTP 500 error

o A successful HTTP 200 response but with incorrect content

o A policy error; for example, your application promises a response time
of 1 second, but some requests take over a second

e Saturation: Saturation indicates how “full” your application is or what resources
are being stretched and reaching target capacity. Systems can degrade in
performance before they achieve 100% utilization, so make sure to set
utilization targets carefully.

|dentifying and Troubleshooting
Performance Issues

Google Cloud

This section describes areas that you can review to troubleshoot and resolve
performance issues.

Monitor performance in development and production

Production

Development

It is important to monitor performance in the development phase and in production.

Add performance tests to your test suite

Google Cloud

Add performance tests to your test suite to ensure that the performance of your
application does not degrade when you fix bugs, add new features, or change
underlying software. Response times and resource requirements can change
significantly when you make changes to your application. With performance tests, you
will be able to detect and address performance issues early in the development
process.

Images
https://pixabay.com/en/running-sprinting-speed-start-run-150493/
https://pixabay.com/en/sport-train-active-fitness-1014015/
https://pixabay.com/en/gauge-icons-performance-1294568/

https://pixabay.com/en/running-sprinting-speed-start-run-150493/
https://pixabay.com/en/sport-train-active-fitness-1014015/
https://pixabay.com/en/gauge-icons-performance-1294568/

Check performance watchpoints related to incoming

requests
Cold-boot Performance Self-inflicted Load
Web page design and Operations during initial boot Service-to-service or
implementation of VM browser-to-service calls

Development

A watchpoint is a potential area of configuration or application code that could indicate
a performance issue. Performance issues may be a result of multiple watchpoints.

Review metrics related to incoming requests and check the following areas for
performance issues:

e Web authoring: Review the design and implementation of your web pages.
You can use PageSpeed Insights to view information about the lack of caching
headers, the lack of compression, too many HTTP browser requests, slow
DNS response, and the lack of minification. If the application is not
public-facing, you can use Chrome DevTools with PageSpeed Insights to
manually analyze your web pages.

e Cold-boot performance: Use tracing to understand how much time is spent on
each operation. Ensure that the code only references JAR files or external
libraries that are absolutely needed. Reducing binary size can help cold boot
time. Optimize code paths, use previously cached information, and remove
unnecessary logic in your startup code.

e Self-inflicted load: Look for load caused by the application itself, such as
service-to-service or browser-to-service calls. For example, check for polling,
cron jobs, batch requests, or multiple AJAX requests from browser. Consider
using client-side (Chrome_DevTools) and server-side load analysis tools
(Stackdriver Trace).

For more information about client-side analysis tools, see:
° Chrome Dev Tools: https://developer.chrome.com/devtools

https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

e PageSpeed Insights:
https://developers.google.com/speed/pagespeed/insights/

https://developers.google.com/speed/pagespeed/insights/

Review application code and logs

Application Errors Runtime Code Gen. Static Resources

HTTP errors and other Aspect-oriented programming Static web pages, images
exceptions

One-at-a-Time Retrieval Error-Handling

Database retrieval and Multiple serial requests Exponential backoff
computation

Development

Review application code and logs as follows to check for performance issues:

e Application errors: Check logs for HTTP errors (4xx, 5xx) and application
errors and exceptions. Identify the root cause of the log messages and confirm
that they are not related to periodic load or performance issues. Prioritize
investigation by the frequency of errors. Because this data is historical, some
errors might have been intermittent or already resolved. If a log message is
unreproducible, it might be better to defer the investigation.

e Runtime code generation: Aspect-oriented programming practices can
sometimes cause reduced application performance. Consider compile-time
code generation instead. For more information about aspect-oriented
programming, see https://en.wikipedia.org/wiki/Aspect-oriented_programming.

e Static resources: Do not serve static resources from your application. Instead,
use a content delivery network (CDN) such as Google Cloud CDN with Google
Cloud Storage.

e Caching: Consider caching frequently accessed values that are retrieved from
a database or require significant compute resources to recalculate. You can
also cache generated HTML fragments for later use.

o One-ata-tHmeRetreva-One-at-a-time retrieval: Look for areas where data is
retrieved from a database or service with multiple requests in serial. Replace
these individual requests with a single batch request or send the requests in
parallel.

e Error handling: Do not retry constantly on errors; instead, retry with
exponential backoff. Implement a circuit breaker to stop retries after a certain
number of failures. Note that you should only retry in case of errors such as

https://en.wikipedia.org/wiki/Aspect-oriented_programming

e connection timeouts or too many requests. Do not retry in case of errors such
as 5xx errors and malformed URL errors.

Check performance watchpoints related to incoming requests
in production

External User Load Periodic Load Malicious Load
Most frequent and slowest Traffic over an extended Source of traffic expected and
requests period of time legitimate

Monitor incoming requests to check the following areas:

e External user load: Analyze the most frequent requests and slowest requests.
Confirm that the requests are expected. Determine the cause for the slowest
requests.

e Periodic load: Analyze traffic over an extended period of time to determine
which periods have higher levels of usage. Confirm that there is a business
reason for this load.

e Malicious load: Confirm that all load is expected and legitimate. If you have a
web application, make sure that all load is coming from a web or mobile client.
You can further segment the load by user to understand whether the majority
of requests are coming from a small number of users.

Review deployment settings

Autoscaling Source of traffic Schedule

Review deployment settings as follows:
® Scaling: Make sure that you have set up load balancing and autoscaling
policies as appropriate for the traffic volumes for your application. Set target
utilization levels conservatively to ensure that your application continues to
handle traffic while new VM instances come online.
® Region: Determine where the bulk of your traffic is coming from. Deploy
resources in the appropriate regions to reduce latency.

® Cron jobs: Make sure that your cron jobs are scheduled accurately.

Review and implement best practices for each of the services that you are using in
your application.

Traditional SRE blessing

May the queries flow, and the pager stay silent.

SRE stands for Site Reliability Engineering. For more information about site reliability
engineering, see https://landing.google.com/sre/book.html.

https://landing.google.com/sre/book.html

