Managing APIls with Google Cloud
Endpoints

Developing Applications with Google Cloud Platform

CLOUD ENDPOINTS

@ (OLVIINW.\:2 8 DEPLOYING AN API FOR THE QUIZ APPLICATION

Version 2.0
Last modified: 2017-09-25 Go gle Cloud

Implement an API gateway to make backend functionality
available to consumer applications

/account

Backend application

component on Google
D /order o * Jhistory Cloud Platform

Cloud

@ D /payment Q /creditgateway

/rewards - | |

APls Legacy App

Partner,
Consumer, and
Employee Apps

An API gateway enables clients to retrieve data from multiple services with a single
request. An API gateway creates a layer of abstraction and insulates the clients from
the partitioning of the application into microservices.

You can use Google Cloud Endpoints to implement AP| gateways. Additionally, the
API for your application can run on backends such as Google App Engine, Google
Container Engine, or Compute Engine.

If you have legacy applications that cannot be refactored and moved to the cloud,
consider implementing APIs as a facade or adapter layer. Each consumer can then
invoke these modern APIs to retrieve information from the backend instead of
implementing functionality to communicate using outdated protocols and disparate
interfaces.

Using the Apigee API platform, you can design, secure, analyze, and scale your APIs
for legacy backends. For more information about the Apigee API platform, see:
Getting Started: http://docs.apigee.com/api-services/content/what-apigee-edge
Training: http://academy.apigee.com/index.php

Images:
https://pixabay.com/en/computer-network-router-server-159829 /
https://material.io/icons/

http://docs.apigee.com/api-services/content/what-apigee-edge
http://academy.apigee.com/index.php
https://pixabay.com/en/computer-network-router-server-159829
https://material.io/icons/

Deploying and managing APl on your own can be difficult

Interface ﬁutﬂeqtlcqtlon and
Definition uthorization
API

Management

Logging and
Monitoring

There are a few issues to consider when deploying and managing APIs on your own.

® \What language or format will you use to describe the interface? For example,

will you use a format such as WSDL or Open API to express the schema and
constraints of the API?

® How will you authenticate services and users who invoke your API?
How will you ensure that your API scales to meet demand?

® Does your infrastructure log details about API invocations and provide
monitoring metrics?

Cloud Endpoints enables you to deploy and manage APls

Interface Authentication and
Definition Authorization
Open API Service-to-service authentication
gRPC API User authentication
Cloud

Endpoints
Logging and
Monitoring
Extensible Service Proxy, Stackdriver Logging
Service Management, Stackdriver Trace

Service Control

Cloud Endpoints provides the infrastructure support needed to deploy and manage
robust, secure, and scalable APls.

Cloud Endpoints supports the Open API specification and gRPC API specification.

Cloud Endpoints supports service-to-service authentication and user authentication
with Firebase, AuthO, and Google authentication.

The Extensible Service Proxy, Google Service Management, and Google Service
Control together validate requests, log data, and handle high volumes of traffic.

Using Cloud Endpoints, Stackdriver Logging and Stackdriver Trace, you can view
detailed logs, trace lists, and metrics related to traffic volume, latency, size of
requests and responses, and errors.

—

Cloud Endpoints supports REST APIs and gRPC APls

Cloud Endpoints for REST APls Cloud Endpoints for gRPC APIs

e JSON/REST API: e gRPC API:
o Popular o Newer technology
o Easytouse o Fast
e API configuration: Open API o Can generate client
specification libraries for
programming
languages

o Enables type safety
e API configuration:
o Service definition:
Protocol buffers
o Service configuration:
gRPC API
specification

Google Cloud

JSON/HTTP 1.1-based REST APIs are popular and easy to use. To enable Cloud
Endpoints for REST APlIs, create the API configuration in a YAML file based on the
Open API specification.

gRPC is a newer, faster technology. You can generate client libraries for various
programming languages. Your application can then make type-safe, remote server
calls as if they were local calls. To enable Cloud Endpoints for gRPC APIs, create
your service definition by using protocol buffers, and then create a service
configuration by using the gRPC API specification.

Cloud Endpoints supports transcoding of HTTP/JSON calls into gRPC. You clients
can access your gRPC API by using HTTP/JSON.

For more information about Cloud Endpoints for REST APlIs, see
https://cloud.google.com/endpoints/docs/openapi/open-api-spec.

For more information about gRPC, see:

® gRPC: https://grpc.io/

® Announcing gRPC Alpha for Google Cloud Pub/Sub:
https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-for-go
ogle-cloud-pubsub

® Cloud Endpoints for gRPC APls:
https://cloud.google.com/endpoints/docs/grpc/about-grpc

https://cloud.google.com/endpoints/docs/openapi/open-api-spec
https://grpc.io/
https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-for-google-cloud-pubsub
https://cloud.google.com/blog/big-data/2016/03/announcing-grpc-alpha-for-google-cloud-pubsub
https://cloud.google.com/endpoints/docs/grpc/about-grpc

® Transcoding HTTP/JSON to gRPC:
https://cloud.google.com/endpoints/docs/grpc/transcoding

https://cloud.google.com/endpoints/docs/grpc/transcoding

Cloud Endpoints for REST APIs

Google Cloud

In the remainder of this presentation, we will focus on APl management for REST
APIs.

Develop and deploy your API configuration and API backend

Develop API Develop API Deploy API Deploy API
backend. configuration. configuration. backend.

Service Configuration ID
Service Name

In the remainder of this presentation, we will focus on APl management for REST
APIs.

Let’s dive into Google Cloud Endpoints for REST APlIs.

This diagram illustrates the high-level steps to make your API backend available as
Cloud Endpoints API.

After you develop your REST API backend, create an API configuration file that
describes your Cloud Endpoints API.

Deploy the API configuration by using the gcloud service-management
deploy command. The gcloud command returns the service configuration ID and
service name. Specify this service configuration ID and service name in your API
backend’s configuration file, such as the app.yaml for App Engine flexible
environment deployments.

Finally, deploy the API backend.

Use the Open API specification as the Interface Definition
Language

swagger: "2.0"

info:
description: "My new API."
title: "Cloud Endpoints Example"

version: "1.0.0"
host: "quiz-api.endpoints.YOUR-PROJECT-ID.cloud.goog"
basePath:
paths:

securityDefinitions: ...

Interface

Definition
Google Cloud

Create an API configuration file that describes your Cloud Endpoints API. The API
configuration is a YAML file that describes the API using the Open API specification.
The Open API specification and its extensions enable you to describe the surface of
the APl and security definitions. You can specify security definitions to for user
authentication and service-to-service authentication.

For more information about the schema of the objects in the Open API Specification,
see: https://github.com/OAI/OpenAPI-Specification.

Various tools are available to help you create and manage your Open API
specification. For more information, see:

® Swagger Editor: http://editor.swagger.io/
® Swagger Tools and Integrations: https://swagger.io/open-source-integrations/

® OpenAPI / Swagger Resource List for APl Developers:
https://blog.runscope.com/posts/openapi-swagger-resource-list-for-api-develo

pers

https://github.com/OAI/OpenAPI-Specification
http://editor.swagger.io/
https://swagger.io/open-source-integrations/
https://blog.runscope.com/posts/openapi-swagger-resource-list-for-api-developers
https://blog.runscope.com/posts/openapi-swagger-resource-list-for-api-developers

Service Management API, Service Control API, and Extensible
Service Proxy form the core of Cloud Endpoints

~
-
(t[:]’)—> I{E l Extensible Service Proxy F\NE Gl
Load Balancing N
API Config Runtime Check
and Report
Service Management API Service Control API ———*Q

ECHNCRI- QR (API Config Registered at Deployment) (Checks against API Config at Runtime) Cloud

Console

API Service Name:
[YOUR-API] .endpoints. [YOUR-PROJECT-ID] .cloud.goog

Google Cloud

When you deploy the API configuration, the configuration is registered with the
Google Service Management API and shared with the Extensible Service Proxy.

Service Management uses the host value in your deployment configuration file to
create a new Cloud Endpoints service with the name
[YOUR-API].endpoints.[YOUR-PROJECT-ID].cloud.goog (if it does not exist), and
then configures the service according to your OpenAPI configuration file. Cloud
Endpoints uses DNS-compatible names to uniquely identify services. Because
projects in Google Cloud Platform are guaranteed to have a globally unique name,
you can use your project name to create a unique API service name such as
quiz-api.endpoints.my-project-id.cloud.goog . You can also map your
own DNS name to your API.

The Extensible Service Proxy is an NGINX-based proxy that runs in front of the API
backend and injects Cloud Endpoints functionality such as authentication, monitoring,
and logging. The proxy uses techniques such as heavy caching and asynchronous
calls to remain lightweight and highly performant.

At runtime, Cloud Endpoints can receive calls from any source, such as mobile
applications, web applications, and other services. The calls are load balanced and
routed to the Extensible Service Proxy. The Extensible Service Proxy works with the
Service Control API to check the request against the API configuration and verify that
the request can be passed through to the backend. If the request authenticates
successfully, the Extensible Service Proxy passes it on to the API backend. The

Service Control API logs information about incoming requests. These log messages
and metrics can be viewed by using the Cloud Console.

For more information, see:
® Cloud Endpoints Architectural Overview:
https://cloud.google.com/endpoints/docs/openapi/architecture-overview

® Naming Your APi:
https://cloud.google.com/endpoints/docs/openapi/naming-your-api-service

https://cloud.google.com/endpoints/docs/openapi/architecture-overview
https://cloud.google.com/endpoints/docs/openapi/naming-your-api-service

Enable user authentication and service-to-service authentication
Q Backend API
>
@ @ Cloud Endpoints
“D}) Frontend API
Cloud Endpoints ice-to- i
= e Senvice o-service Backend AP
Authentication uthenticatio Cloud Endpoints
securityDefinitions: .
firebase: e Create a service account for
2‘;220“35‘1’23? " service-to-service authentication.
type: "oauth2" e Use a Google ID Token to sign the
Replace YOUR-PROJECT-ID with your project ID token.
x-google-issuer:
"https://securetoken.google.com/YOUR-PROJECT-ID"
x-google-jwks_uri:
"https://www.googleapis.com/service accounts/vl/metadata
/x509/securetoken@system.gserviceaccount.com"
x-google-audiences: "YOUR-CLIENT-ID"
security: H H
e paee: 1 Authentication and

Authorization
Google Cloud

With Cloud Endpoints API, you can authenticate users who are attempting to invoke
your frontend APls. Cloud Endpoints supports user authentication with Firebase,
AuthO, Google authentication, and other custom authentication methods. After the
user signs in, the authentication providers send a signed JSON Web Token (JWT
pronounced jot) to Cloud Endpoints. Cloud Endpoints checks that the JWT is signed
by the provider that you specified in your API configuration.

For service-to-service authentication, create a service account. Use a Google ID
Token to sign the token.

For more information, see:

® Authenticating service-to-service calls with Google Cloud Endpoints (Google
Cloud Next '17): https://www.youtube.com/watch?v=4PgX3yBJEyw

® Service-to-service authentication:
https://cloud.google.com/endpoints/docs/openapi/service-to-service-auth

Images:
https://pixabay.com/en/key-ring-key-tag-label-plain-157133/

https://www.youtube.com/watch?v=4PgX3yBJEyw
https://cloud.google.com/endpoints/docs/openapi/service-to-service-auth
https://pixabay.com/en/key-ring-key-tag-label-plain-157133/

You can restrict APl access

Service Consumer

Assign Cloud IAM roles to users.

Grant permissions for specific APIs.

Service Controller,
Viewer, Editor, Owner

Authentication and

Authorization
Google Cloud

To restrict access to your Cloud Endpoints API, you can assign Cloud Identity and
Access Management (Cloud IAM) roles to specific users. You can grant access to a
specific API or to the entire Cloud project.

To give users the ability to enable your service in their own Cloud project and invoke
its APls, assign the Service Consumer role to them. This is the most common use
case. You can assign the Service Controller, Viewer, Editor, or Owner roles to give
users greater permissions to view and manage service configurations and projects.

For more information about granting APl access, see
https://cloud.google.com/endpoints/docs/openapi/api-access-overview.

https://cloud.google.com/endpoints/docs/openapi/api-access-overview

Backwards-Compatible Changes

Increment
version in API
configuration.

Deploy API Deploy API
configuration. backend.

Service Configuration ID
Service Name

apiconfig.yaml
info:
description: "Cloud Endpoints API example."
title: "Endpoints Example"
version: "1.2"
host: "quiz-api.endpoints.example-project.cloud.goog"

—

You can deploy multiple versions of your APl in production

Backwards-Incompatible Changes

Create two Deploy API

versions of Deploy API backend for

API configurations. both

configuration. versions.
Service Configuration IDs for v1 and v2
Service Name

apiconfig vl.yaml
info:
description: "Cloud Endpoints API example."
title: "Endpoints Example"
version: "1.1"
host: "quiz-api.endpoints.example-project.cloud.goog"
basePath: "/v1"

apiconfig v2.yaml
info:
description: "Cloud Endpoints API example."
title: "Endpoints Example"
version: "2"
host: "quiz-api.endpoints.example-project.cloud.goog"
basePath: "/v2"

Google Cloud

You might make small changes, bug fixes, and performance enhancements to your
API backend. These changes are usually backward compatible. In such cases, it is
good practice to increment the version attribute in the Cloud Endpoints API
configuration and then redeploy the API configuration and the API backend.

If you make changes that are not backwards compatible and will break consumers of
your API, deploy two versions of your Cloud Endpoints API by creating a separate
API configuration for each version. The gcloud service-management deploy
command will return a different service configuration ID for each version. Update the
API backend configuration of each version with the corresponding service

configuration id.

You can also delete versions of your APl when they are no longer in use. Make sure
to announce your deprecation and phase-out plans to the consumers of the API well
in advance. This will give them time to evaluate and migrate to newer versions of your

APL.

For more information, see:

® Versioning an API: https://cloud.google.com/endpoints/docs/versioning-an-api

® Deleting an AP| and API instances:

https://cloud.google.com/endpoints/docs/openapi/deleting-an-api-and-instance

S

https://cloud.google.com/endpoints/docs/versioning-an-api
https://cloud.google.com/endpoints/docs/openapi/deleting-an-api-and-instances
https://cloud.google.com/endpoints/docs/openapi/deleting-an-api-and-instances

You can deploy your APl in multiple environments

Development quiz-api.endpoints.jane-dev-project.cloud.goog/v1/extract
Staging quiz-api.endpoints.staging-project.cloud.goog/v1/extract
el iaileiWAG)EM quiz-api.endpoints.prod-alpha-project.cloud.goog/v1/extract

Production quiz-api.endpoints.prod-project.cloud.goog/v1/extract

When developing and deploying APIs, you will have separate environments for
developing, staging, limited releases such as a private alpha, and production.

You can create separate projects for each environment and deploy your Cloud
Endpoints APl and backend with separate endpoints for your consumers. For
example, developers can run their unit tests against the development environment.
You can run integration tests against the staging endpoint. A separate project for
private alphas provides a high degree of isolation from other environments.

For more information about naming conventions for projects, see
https://cloud.google.com/endpoints/docs/openapi/planning-cloud-projects.

https://cloud.google.com/endpoints/docs/openapi/planning-cloud-projects

dashboard

/api/quizzes/*

—

Requests
Requests/sec (1 min Sep 12,2017
average) 4:38PM
0.20/s
0.15/s
0.10/s
0.05/s
o]
5PM 5:30
Method Requests
GET

Errors

Ratio (%) Sep 12,2017 4:49 PM
1200
100%
ao%
a0%
40%
200
0
sPu 530
® 2x0
® 500
Avg req size

430B

Total latency

Latency Sep 12,2017 4:40 PM

600ms

s00ms

400ms.

300ms.

200ms

100ms

sPm 530
® 50th Percentile: 0

® 95th Percentile: 4ms

® 98th Percentile: 4ms

Avg resp size 4xx

509B 0

You can view error logs and metrics from the Cloud Endpoints

Sxx Latency 98%

0 472 ms

Latency 95%

393 ms

Latency median

66 ms

Logging and
Monitoring
Google Cloud

In the Cloud Endpoints dashboard, you can see metrics related to requests, 4xx and

5xx errors, and latency. You can also view logs in Stackdriver Logging to see

detailed information about requests to each API.

More resources

API Design Guide

https://cloud.google.com/apis/design/

Authenticating service-to-service calls with
Google Cloud Endpoints

https://youtu.be/4PgX3yBJEyw

https://cloud.google.com/apis/design/
https://youtu.be/4PgX3yBJEyw

