
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

© 2017 Google Inc. All rights reserved. Google
and the Google logo are trademarks of Google Inc.
All other company and product names may be
trademarks of the respective companies with
which they are associated.

Using Google Cloud Pub/Sub to
Integrate Components of Your
Application
Developing Applications with Google Cloud Platform

Version 2.0
Last modified: 2017-09-25

CLOUD PUB/SUB, CLOUD DATASTORE, CLOUD BIGTABLE, CLOUD DATAFLOW,
CLOUD MONITORING

DEVELOPING A BACKEND SERVICE

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

3

Organizations have to rapidly ingest, transform, and analyze
massive amounts of data

AnalyzeTransform

Web

IoT

Endpoint Clients

Mobile iOS

Android

Web

User
experience

User and
Device data

Ingest

Cloud
Dataflow

Cloud
Pub/Sub BigQuery

Across industry verticals, a common scenario is that organizations have to rapidly
ingest, transform, and analyze massive amounts of data. For example, a gaming
application might receive and process user engagement and clickstream data. In the
shipping industry, IoT applications might receive large amounts of sensor data from
hundreds of sensors. Data processing applications transform the ingested data and
save it in an analytics database. You can then analyze the data to provide business
insights and create innovative user experiences.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Organizations have to orchestrate complex business
processes

4

Front end
US West

Front end
US West

Front end
US East

Front end
US East

Front end
EU

Front end
EU

PayLabel
Service

Recommend-
ations

FriendList
service

Top10
service

Organizations often have complex business processes that require many applications
to interact with each other. For example, when a user plays a song, a music
streaming service must perform many operations in the background. There might be
operations to pay the record company, perform live updates to the catalog, update
song recommendations, handle ad interaction events, and perform analytics on user
actions. Such complex application interactions are difficult to manage with brittle
point-to-point application connections.

Cloud Pub/Sub enables you to scalably and reliably ingest large volumes of data. It
also enables you to design loosely coupled microservices that can streamline
application interactions.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cloud Pub/Sub delivers each message to every subscription at-least-once.

Cloud Pub/Sub is a fully managed real-time messaging
architecture

6

Publisher

Topic

Message

Cloud
Pub/Sub

Message

Subscription

Subscriber

Pull or push

Ack

Cloud Pub/Sub is a fully managed real-time messaging architecture.

An application or service that publishes messages is called a publisher. A publisher
creates and publishes messages to a topic. To receive messages, a subscriber
application creates a subscription to a topic. A subscription can use either the push or
pull method for message delivery. The subscriber only receives messages that are
published after the subscription was created. After receiving and processing each
pending message, the subscriber sends an acknowledgement back to the Cloud
Pub/Sub service. Cloud Pub/Sub removes acknowledged messages from the
subscription’s queue of messages. If the subscriber does not acknowledge a
message before the acknowledgement deadline, Cloud Pub/Sub will resend the
message to the subscriber. Cloud Pub/Sub delivers each message to every
subscription at-least-once.

Cloud Pub/Sub enables loosely coupled integration between application components,
acts as a buffer to handle spikes in data volume, and also supports other use cases.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cloud Pub/Sub supports pull and push subscriptions
5

Cloud
Pub/Sub

AckMessage

Pull
Subscription

Subscriber

Cloud
Pub/Sub

AckMessage

Push
Subscription

Subscriber

Ack idAck id HTTP Success
Status Code

Pre-configured
HTTP endpoint

Default subscription
model

Pull Subscription
In a pull subscription, the subscriber explicitly calls the pull method to request
messages for delivery. Cloud Pub/Sub returns a message and an acknowledgement
ID. To acknowledge receipt, the subscriber invokes the acknowledge method by using
the acknowledgement ID. This is the default subscription model.

In a pull subscription model, the subscriber can be Cloud Dataflow or any application
that uses Google Cloud Client Libraries to retrieve messages. The subscriber controls
the rate of delivery. A subscriber can modify the acknowledgement deadline to allow
more time to process messages. To process messages rapidly, multiple subscribers
can pull from the same subscription. The pull subscription model enables batched
delivery and acknowledgments as well as massively parallel consumption.

Use the pull subscription model when you need to process a very large volume of
messages with high throughput.

Push Subscription
A push subscriber does not need to implement Google Cloud Client Libraries
methods to retrieve and process messages.

In a push subscription model, Cloud Pub/Sub sends each message as an HTTP
request to the subscriber at a pre-configured endpoint. The push endpoint can be a
load balancer or Google App Engine Standard application. The endpoint
acknowledges the message by returning an HTTP success status code. A failure

response indicates that the message should be sent again. Cloud Pub/Sub
dynamically adjusts the rate of push requests based on the rate at which it receives
success responses. You can configure a default acknowledgment deadline for push
subscriptions. If your code does not acknowledge the message before the deadline,
Cloud Pub/Sub will resend the message.

Use the push subscription model in the following scenarios:
● Environments where Google Cloud dependencies such as credentials and the

client library cannot be configured.
● Multiple topics must be processed by the same webhook.
● HTTP endpoint will be invoked by Cloud Pub/Sub and other applications. In

this scenario, the push subscriber should be able to process message
payloads from Cloud Pub/Sub and other callers.

For more information about pull and push subscriptions, see
https://cloud.google.com/pubsub/docs/subscriber#push_pull.

https://cloud.google.com/pubsub/docs/subscriber#push_pull

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

You have a choice of execution environments for subscribers
8

Develop highly-scalable subscribers with
Google Cloud Functions or Cloud Dataflow.

App Component

Deploy subscriber on Google Compute
Engine, Google Container Engine, or Google
App Engine flexible environment. Autoscale
based on Google Stackdriver metrics.

Autoscale

App Component

Compute Env

App Component

Compute Env

Cloud
Pub/Sub

Cloud
Pub/Sub

Cloud
Functions

Cloud
Pub/Sub

Cloud
Dataflow

You can deploy your subscriber code as a Cloud Function. Your Cloud Function will
be triggered whenever a new message is received. This approach enables you to
implement a serverless approach and build highly-scalable systems.

Alternatively, you can deploy your subscriber application on a compute environment
such as Compute Engine, Container Engine, or App Engine flexible environment.
Multiple instances of your application can spin up and process the messages in the
topic and split the workload. These instances can automatically be shut down when
there are few messages to process. You can enable elastic scaling using Cloud
Pub/Sub metrics that are published to Stackdriver.

With either approach, you do not have to worry about developing code to manage
concurrency or scaling. Your application scales automatically depending on the
workload.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use Cloud Pub/Sub for asynchronous processing and loose
coupling

10

Subscription

Subscriber
Inventory Service

Publisher
Order Service

Topic
Orders

Order

Cloud
Pub/Sub

Cloud Pub/Sub enables your application to perform operations asynchronously.
Traditionally, one service or component of your application has to directly invoke
another component to perform an operation. The call is synchronous, so the caller
has to wait for the entire operation to finish. The application components are tightly
coupled because both must be running at the same time.

With Cloud Pub/Sub, you can design your services to make asynchronous calls and
be loosely coupled. For example, in the diagram, the Order service acts as the
publisher. It publishes messages that contain order information to the Orders topic
and returns immediately. The Inventory service acts as the subscriber. It might even
be down when the publisher sends messages. The subscriber can start running a little
later and process the messages that it has subscribed to.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use Cloud Pub/Sub to buffer incoming data
11

Publisher
Order Service

Orders Topic

Order

Cloud
Pub/Sub

Publisher
Order Service

Publisher
Order Service

Order Order

Order

Order

Subscription

Subscriber
Inventory Service

Subscriber
Inventory Service

Order

Cloud Pub/Sub enables you to use a topic as a buffer to hold data that is coming in
rapidly. For example, you might have multiple instances of a service generating large
volumes of data. A downstream service that needs to process this data might become
overwhelmed with the high velocity and volume of data.

To address this issue, instances of your data-generating service can act as publishers
and publish the data to a Cloud Pub/Sub topic. Cloud Pub/Sub can reliably receive
and store large amounts of rapidly incoming data. The downstream service can then
act as a subscriber and consume this data at a reasonable pace. Your application can
even automatically scale up the number of instances of the subscriber to handle
increased volumes of data.

The diagram shows many messages with order information coming in from various
sources. The Inventory service can subscribe to these messages and process them
at a reasonable pace as appropriate.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use Cloud Pub/Sub to fan out messages
12

Publisher
Order Service

Orders Topic

Order

Cloud
Pub/Sub

Order

Subscription
For Inventory

Service

Subscriber
Inventory Service

Order

Subscription
For Payments

Service

Subscriber
Payment Service

With Cloud Pub/Sub, your application can fan out messages from one publisher to
multiple subscribers. Instead of being aware of all services that might be interested in
a particular piece of data and making point-to-point connections with all the services,
the publisher can push messages to a centralized Cloud Pub/Sub topic. Services that
are interested in that information can simply subscribe to the topic.
For example, in the diagram, information about orders is fanned out to the Inventory
and Payment services.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Handle duplicate messages

Ensure that messages contain identifying attributes that subscribers can use to
perform idempotent operations.

13

Orders
Topic

Subscription
for Inventory

Service

Subscriber
Inventory Service

Cloud
Bigtable

Cloud
Datastore

Order
OrderId: 98

Publisher
Order Service

Order
OrderId: 98

Publish messages that
contain a unique ID.

Check previously saved
messages to see
whether the incoming
message is new and
needs to be processed.

Store information
about messages that
have already been
processed. Use the
unique ID as key.

Previously Processed Orders
Key: OrderId

97
99

Cloud Pub/Sub guarantees at-least-once delivery. This means that a subscriber can
sometimes see duplicate messages. Implement your publisher and subscriber in such
a way that the application can perform idempotent operations.

The publisher can publish messages with a unique id. Your subscriber can use
Google Cloud Datastore or Google Cloud Bigtable to store information about
messages that have already been processed. Use the unique ID as key. Whenever a
message is received, the subscriber can check previously saved messages to see
whether the incoming message is new and needs to be processed. If the message
has already been processed, the subscriber can just discard the duplicate message.

For use cases that involve Big Data, you can use Google Cloud Dataflow PubsubIO
to achieve exactly-once processing of Cloud Pub/Sub message streams. PubsubIO
removes duplicate messages based on custom message identifiers or identifiers
assigned by Cloud Pub/Sub. For more information about PubsubIO, see
https://cloud.google.com/dataflow/model/pubsub-io.

https://cloud.google.com/dataflow/model/pubsub-io

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

For scalability, reduce or eliminate dependencies on message
ordering.

14

Scenario:
Ordering is irrelevant

Examples:
● Collection of

statistics about
events

● Notification when
somebody comes
online

Scenario:
Final order is
important; processed
message order is not

Examples:
● Log messages

Scenario:
Processed message
order is important

Examples:
● Transactional

data such as
financial
transactions

● Multi-player
network games

Cloud Pub/Sub provides a highly scalable messaging architecture. The scalability
comes with a tradeoff: message ordering is not guaranteed. Where possible, design
your application to reduce or eliminate dependencies on message ordering.

For example, message ordering is not relevant in use cases where your application is
collecting statistics about events. You do not need to process the statistics-related
events in order. Similarly, if five of your contacts come online around the same
moment in time, you do not need to be notified about their presence in the same order
that they came online.

There are scenarios in which the final order of messages is important, but the order in
which individual messages are processed is not important. For example, log events
with timestamps may stream into the logging service from various sources. The order
of processing each log event is not important. However, eventually your system
should enable you to view log events ordered by timestamp.

Cloud Pub/Sub works well naturally for use cases where order of message
processing is not important.

Finally, there are scenarios where messages must absolutely be processed in the
order in which they were published. For example, financial transactions must be
processed in order. Similarly, in a multi-player online game, if a player jumps over a
wall, lands on a monster, and recovers the lost jewel, other players must see the
events in exactly the same order.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Handle message ordering for transactional data
13

Subscriber
Inventory Service

Order
OrderId: 103

Processed Orders
Key: OrderId

100
101

Cloud
Datastore

Orders To Be
Processed
Key: OrderId

104

Subscriber knows the order in which
messages must be processed.

Subscriber checks oldest unacknowledged message
in Cloud Monitoring metrics.

Subscriber
Inventory Service

Orders To Be Processed
MessageId PublishTime

13710354 1256953732
15510332 1400682415

Cloud
Datastore

Monitoring
Check Cloud Pub/Sub metric:
subscription/oldest_unacked_message_age 1500682415

You can implement ordered processing of messages in one of the following ways:
● Subscriber knows the order in which messages must be processed: The

publisher can publish messages with a unique id. Your subscriber can use
Cloud Datastore to store information about messages that have been
processed so far. When a new message is received, the subscriber can check
whether this message should be processed immediately or the unique ID
indicates that there are pending messages that should be processed first. For
example, the Inventory service knows that orders should be processed in a
sequence using the OrderId as key. When messages with order ids 103 and
104 are received, it checks the previously processed orders and determines
that OrderId 102 is pending. It temporarily stores orders 103 and 104 and
processes them all in order when order 102 is received.

● Subscriber checks oldest unacknowledged message in Cloud Monitoring
metrics: The subscriber can store all messages in a persistent data store. It
can check the subscription/oldest_unacked_message_age metric
that Cloud Pub/Sub publishes to Google Stackdriver. The subscriber can
compare the timestamp of the oldest unacknowledged message against the
publish timestamps of the messages in the data store. All messages published
before the oldest unacknowledged message are guaranteed to have been
received, so those messages can be removed from the persistent data store
and processed in order.

For more information about message ordering, see

https://cloud.google.com/pubsub/docs/ordering.

https://cloud.google.com/pubsub/docs/ordering

