
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

© 2017 Google Inc. All rights reserved. Google
and the Google logo are trademarks of Google Inc.
All other company and product names may be
trademarks of the respective companies with
which they are associated.

Handling Authentication and
Authorization
Developing Applications for GCP

ADDING USER AUTHENTICATION TO YOUR APPLICATION

Version 2.0
Last modified: 2017-09-25

CLOUD IAM, FIREBASE SDK

Explain how to use Cloud IAM roles and service accounts

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cloud Identity and Access Management

Cloud IAM lets you manage access control by defining who (members) has what
access (role) for which resource. You can grant more granular access to GCP
resources using the security principle of least privilege—only grant necessary access
to resources.

For more information, see: https://cloud.google.com/iam/docs/overview

https://cloud.google.com/iam/docs/overview

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Specify who has access with IAM members

Types of IAM members:

● Google account
● Service account
● Google group
● G Suite domain
● Cloud Identity domain

You can specify who has access to your resources with IAM members. Members can
be of the following types: Google account, service account, Google group, G Suite
domain, or Cloud Identity domain.

A Google cloud account represents a developer, administrator, or person who
interacts with Google Cloud Platform. An email address that is associated with a
Google account, such as a gmail.com address, can be an identity. For more
information on Google account creation, see: https://accounts.google.com/signup

A service account belongs to an application instead of to an individual end user.

A Google group is a named collection of Google accounts and service accounts.
Every group has a unique email address that is associated with the group. Google
groups are a convenient way to apply an access policy to a collection of users.
Google groups don’t have login credentials, so you cannot use them to establish
identity to make a request to access a resource. For more information on Google
groups, see: https://groups.google.com/forum/#!overview

A G Suite domain represents a virtual group of all the members in an organization.
Suite customers can associate their email accounts with an Internet domain name.
When you do this, each email account takes the form username@yourdomain.com.
You can specify an identity by using any Internet domain name that is associated with
a G Suite account. Like groups, domains cannot be used to establish identity, but they
enable convenient permission management.

https://accounts.google.com/signup
https://groups.google.com/forum/#!overview

A Cloud identity domain represents a virtual group of all members in an organization,
but doesn’t provide access to G Suite applications and features.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Specify what resources the members have access to

● Grant access to users for specific GCP resources
● Resources include:
● GCP projects
● Compute Engine instances
● Cloud Storage buckets
● Pub/Sub topics

You can grant access to users for a Cloud Platform resource. Some examples of
resources are projects, Compute Engine instances, and Cloud Storage buckets.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Specify what operations are allowed on resources

Permissions are represented with the following syntax:

<service>.<resource>.<verb>

Examples:

<pubsub>.<subscriptions>.<consume>

<storage>.<objects>.<list>

<compute>.<disktypes>.<list>

Permissions determine what operations are allowed on a resource. In the Cloud IAM
world, permissions are represented in the form of <service>.<resource>.<verb>, for
example, pubsub.subscriptions.consume.

Permissions usually, but not always, correspond 1:1 with REST methods. That is,
each Cloud Platform service has an associated set of permissions for each REST
method that it exposes. The caller of that method needs those permissions to call that
method. For example, the caller of Publisher.Publish() needs the
pubsub.topics.publish permission.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Assign permissions using roles

There are two kinds of IAM roles:

 Primitive
 Predefined

A role is a collection of permissions. You cannot assign a permission to the user
directly; instead you grant them a role. When you grant a role to a user, you grant
them all the permissions that the role contains. With Cloud IAM, a Cloud API method
requires the identity making the API request to have the appropriate permissions to
use the resource. You can grant permissions by granting roles to a user, a group, or a
service account.

There are three kinds of roles: primitive and predefined.

https://cloud.google.com/iam/docs/understanding-roles

https://cloud.google.com/iam/docs/understanding-roles

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Apply primitive roles at the project level

Role Name Role Title Permissions

roles/viewer Viewer Read-only actions that preserve state.

roles/editor Editor Viewer permissions plus actions that modify state.

roles/owner Owner Editor permissions plus ability to:
● Manage access control for a project and all its

resources.
● Set up billing for a project.

The primitive roles can be applied at the project level using Cloud Platform Console,
the API and the gcloud command-line tool.

Note: Granting the owner role at a resource level (such as a pubsub topic) does not
grant the owner role on the parent project. The owner role does not contain any
permission for the Organization resource. Granting the owner role at the organization
level does not allow you to update the organization's metadata, but it allows you to
modify projects under that organization.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Apply predefined roles for granular access to GCP resources

Role Name Role Title Description Resource Type

roles/bigtable.admin Cloud Bigtable Admin Administers all instances within a project, including the
data stored in tables. Can create new instances.
Intended for project administrators.

Organization
Project
Instance

roles/bigtable.user Cloud Bigtable User Provides read-write access to the data stored in tables.
Intended for application developers or service
accounts.

Organization
Project
Instance

roles/bigtable.reader Cloud Bigtable Reader Provides read-only access to the data stored in tables.
Intended for data scientists, dashboard generators,
and other data-analysis scenarios.

Organization
Project
Instance

 Predefined roles give granular access to specific GCP resources.
 You can grant multiple roles to the same user.

Cloud IAM provides predefined roles that give granular access to specific Google
Cloud Platform resources and prevent unwanted access to other resources.

You can grant multiple roles to the same user. For example, the same user can have
Network Admin and Log Viewer roles on a project and also have a Publisher role for a
Pub/Sub topic within that project.

As an example, roles for Cloud Bigtable are provided. For more information on
predefined roles, see:
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles

https://cloud.google.com/iam/docs/understanding-roles#predefined_roles

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Define who has what type of access using policies

A policy is attached to a resource and is used to enforce access control whenever
that resource is accessed.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cloud IAM Policy example

{

"bindings": [

{

"role": "roles/owner",

"members": [

"user:alice@example.com",

"group:admins@example.com",

"Domain:google.com",

"serviceAccount:my-other-app@appspot.gserviceaccount.com"

]

},

{

"role": "roles/viewer",

"members": ["user:bob@example.com"]

}]

}

Policy owners

Policy viewer

Cloud IAM API methods:

 setIAMPolicy()

 getIAMPolicy()

 testIamPermissions

()

A Cloud IAM policy is represented by the Policy object. A Policy consists of a list of
bindings. A Binding binds a list of members to a role.

The Cloud IAM API methods available are:
● setIamPolicy(): Allows you to set policies on your resources.
● getIamPolicy(): Allows you to get a policy that was previously set.
● testIamPermissions(): Allows you to test whether the caller has the specified

permissions for a resource.

Cloud Platform resources are organized hierarchically, where the Organization node
is the root node in the hierarchy, the projects are the children of the Organization, and
the other resources are the children of projects. Each resource has exactly one
parent.

mailto:alice@example.com
mailto:admins@example.com
mailto:my-other-app@appspot.gserviceaccount.com
mailto:bob@example.com

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use service accounts to authenticate your applications when
invoking Google APIs

Service accounts:

● Belong to your application or VM.
● Are used by your application to call the Google API or service so users

aren’t directly involved.
● Are identified by their unique email addresses.
● Are associated with a key pair.
● Can have up to 10 keys associated with them to facilitate key rotation

(done daily by Google).
● Are supported by all GCP APIs.
● Enable authentication and authorization: you can assign specific IAM

roles to a service account.

Service accounts belong to your application or VM instance instead of to an individual
user. They are used by your application to call the Google API or service so that
users aren’t directly involved in the authentication process. Each service account is
identified by its unique email address. Service accounts are associated with a key pair
and can have up to 10 key pairs associated with them, to facilitate key rotation, which
is managed by Google and done daily. Service accounts enable authentication and
authorization because you can assign specific IAM roles to a service account.

For more information, see:
Service Accounts: https://cloud.google.com/iam/docs/service-accounts
Grant a Service Account an IAM Role:
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-in
stances#createanewserviceaccount

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#createanewserviceaccount
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#createanewserviceaccount

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use external keys for use from outside GCP

External keys:

● Can be created for use from outside GCP.
● Require that you be responsible for security of the private key and other

management operations such as key rotation.
● Are manageable through the:

○ IAM API.
○ gcloud command-line tool.
○ Service Accounts page in the GCP Console.

You can create external keys to be used from outside GCP. They require that you
manage the security of the private key and perform management operations such as
key rotation. External keys are manageable through the IAM API, gcloud, and the
GCP console.

You can optionally use API keys to call certain APIs that don't need to access private
user data. API keys are useful in clients such as browser and mobile applications that
don't have a backend server. The API key is used to track API requests associated
with your project for quota and billing.

For more information on API keys, see:
https://cloud.google.com/docs/authentication/api-keys

https://cloud.google.com/docs/authentication/api-keys

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Project 1

You can define many service accounts in a project

Microservice 1 Microservice 2 Microservice 3

Service Account 1 Service Account 2 Service Account 3

You can define many non-default service accounts in a project. The diagram shows a
use case to manage many microservices in a single Cloud Project by letting each
microservice be represented by its own service account. Granularity is employed by
specifying which service accounts are allowed to call which other services.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Follow these steps to use a service account in your application

1. Create the service account
via the console.

2. Generate and download your
credentials file.

3. Set an environment variable
to provide credentials to your
application.

4. Authenticate in your code
with the default credentials.

Linux or OS X:
export GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file>

Windows:
set GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file>

def implicit():
 from google.cloud import storage

 storage_client = storage.Client()

 # Make an authenticated API request
 buckets = list(storage_client.list_buckets())
 print(buckets)

If you don't specify credentials when
constructing the client, the client library will look
for credentials in the environment.

To use a service account in your application, first create the service account via the
console. You then generate and download your credentials file, and then you can set
an environment variable with the path to your downloaded credentials. The example
shows commands to set the environment variable in both Linux/OS X and Windows.
You can then make an authenticated API request in your code. The example code is
in Python and shows that if you don’t explicitly specify credentials when constructing a
client, the client library will look for credentials in the environment.

For more information, see:
https://cloud.google.com/docs/authentication/getting-started

https://cloud.google.com/docs/authentication/getting-started

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use Application Default Credentials (ADC) to authenticate
between applications

ADC checks for credentials in the following order:

1. Checks for
GOOGLE_APPLICATION_CREDENTIALS
environment variable.

2. Checks for default service accounts.
3. If 1 and 2 aren’t found, an error is thrown.

def implicit():

 from google.cloud import storage

 storage_client = storage.Client()

 buckets = list(storage_client.list_buckets())

 print(buckets)

If you don’t specify credentials when
constructing the client, the client library will
look for credentials in the environment.

Make an authenticated API
request.

Google uses credentials to identify your application for quota and billing and to
authorize access to GCP APIs, resources, and features.

GCP client libraries use Application Default Credentials (ADC) to find your
application’s credentials. Credentials are checked for in the following order: ADC will
check for the GOOGLE_APPLICATION_CREDENTIALS environment variable. If the
environment variable is set, ADC will use the service account file that the variable
points to. If the environment variable isn’t set, ADC will use the default service
account that Compute Engine, Container Engine, App Engine, and Cloud Functions
provide (assuming that your application runs on those services). If neither the
environment variable nor the default service accounts can be found, an error will
occur.

The example demonstrates using Python to implicitly find the credentials—assuming
that either the environment variable is set or the application is running on Compute
Engine, Container Engine, App Engine, or Cloud Functions.

For more information, including how to obtain and provide service credentials
manually, see: https://cloud.google.com/docs/authentication/production

https://cloud.google.com/docs/authentication/production

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use OAuth 2.0 to access resources on behalf of a user

User

Consent

✔

✔

Access User

Data

Use cases include:

● Your application needs to
access Google BigQuery
datasets that belong to users.

● Your application needs to
authenticate as a user to
create projects on their behalf.

It is generally best to use a service account for authentication to a GCP API. In some
cases, you might want to access resource on behalf of a user. Use cases where you
might want to access resources on behalf of a user include your application needing
access to Google BigQuery datasets that belong to your application users, and your
application needing to authenticate as a user to create projects on their behalf. You
can use the OAuth 2.0 protocol to access resources on behalf of a user. Your
application will request access to the resources, the user will be prompted for
consent, and if consent is provided, the application can request credentials from an
authorization server. The application can then use those credentials to access
resources on behalf of the user.

For more information, see:
OAuth 2.0: https://developers.google.com/identity/protocols/OAuth2
Authenticating as an End User: https://cloud.google.com/docs/authentication/end-user

https://developers.google.com/identity/protocols/OAuth2
https://cloud.google.com/docs/authentication/end-user

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cloud Identity-Aware Proxy (IAP)

● Controls access to your cloud
applications running on GCP

● Verifies a user’s identity
● Determines whether that user should be

allowed to access the application

Cloud Identity-Aware Proxy (IAP) controls access to your cloud applications running
on GCP. IAP verifies a user’s identity and determines whether that user should be
allowed to access the application.

IAP allows you to establish a central authorization layer for applications accessed by
HTTPS. IAP lets you adopt an application-level access control model instead of
relying on network-level firewalls.

For more information, see: https://cloud.google.com/iap/docs/

https://cloud.google.com/iap/docs/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

How Cloud IAP works

App Engine Compute Engine

Container Engine

Applications and resources protected by Cloud IAP can only be accessed through the
proxy by users and groups with the correct Cloud IAM role. When you grant a user
access to an application or resource by Cloud IAP, they’re subject to the fine-grained
access controls implemented by the product in use without requiring a VPN. Cloud
IAP performs authentication and authorization checks when a user tries to access a
Cloud IAP-secured resource.

For more information, see: https://cloud.google.com/iap/docs/concepts-overview

https://cloud.google.com/iap/docs/concepts-overview

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Follow these precautions when using Cloud IAP

● Configure your firewall and load balancer to protect against traffic that
doesn’t come from the serving infrastructure.

● Use signed headers or the App Engine standard environment Users API.

To ensure the security of your applications, you should take the following precautions
when using Cloud IAP:

● Configure your firewall and load balancer to protect against traffic that doesn’t
come from the serving infrastructure.

● Use signed headers or the App Engine standard environment Users API.

For more information, see:
Cloud IAP Best Practices: https://cloud.google.com/iap/docs/concepts-best-practices
Signed Headers: https://cloud.google.com/iap/docs/signed-headers-howto
Users API: https://cloud.google.com/appengine/docs/standard/#users

https://cloud.google.com/iap/docs/concepts-best-practices
https://cloud.google.com/iap/docs/signed-headers-howto
https://cloud.google.com/appengine/docs/standard/#users

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use the Firebase SDK to authenticate application users

1. Get authentication credentials from the user.
2. Pass the credentials to the Firebase Authentication SDK.
3. Firebase backend services verify credentials and return a

response to the client.
4. After successful sign-in, you can:

a. Access the user’s basic profile.
b. Control the user’s access to data stored in other

Firebase products.
c. Use the provided authentication token to verify the

identity of users in your own backend services.

Firebase authentication is Google’s federated authentication supporting end user
sign-in at the client app using third-party credentials, for example, from Google or
Facebook.

To sign a user into your app, you first get authentication credentials from the user.
These credentials can be the user's email address and password or an OAuth token
from a federated identity provider. Then, you pass these credentials to the Firebase
Authentication SDK. Firebase’s backend services will then verify those credentials
and return a response to the client.

After a successful sign-in, you can access the user's basic profile information, and
you can control the user's access to data stored in other Firebase products. You can
also use the provided authentication token to verify the identity of users in your own
backend services.

For more information, see: https://firebase.google.com/docs/auth/#how_does_it_work

https://firebase.google.com/docs/auth/#how_does_it_work

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Firebase Pricing

Spark Plan Flame Plan Blaze Plan

Price FREE $25/month Pay as you go

Authentication FREE FREE FREE

Phone Auth 10K authentications a
month

10K authentications a month $0.01/verification (US, Canada, India)
$0.06/verification (All other countries)

Authentication, except for phone authentication, is free regardless of your Firebase
pricing plan. Phone authentication allows for 10,000 authentications a month on the
Spark and Flame plans and is $0.01 per verification in the US, Canada, and India and
$0.06 per verification in all other countries on the Blaze plan.

For more information, see: https://firebase.google.com/pricing/

https://firebase.google.com/pricing/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Remember the following best practices when using Cloud IAM

● Follow the principle of least privilege.
● Rotate service account keys.
● Manage user-managed service account keys.
● Don’t check in service account keys.
● Use Cloud Audit Logging and export logs to Cloud Storage.
● Set organization-level IAM policies.
● Grant roles to a Google group when possible.

Remember the following best practices when using Cloud IAM. For a detailed list of
best practices, see: https://cloud.google.com/iam/docs/using-iam-securely

● Follow the principle of least privilege: use predefined roles (more granular
access) when possible. Grant predefined roles to identities when possible, so
you only give the least amount of access necessary to access your resources.
Grant roles at the smallest scope needed. Restrict who can create and
manage service accounts in your project.

● Rotate service account keys regularly and implement processes to manage
user-managed service account keys. Don’t check in service account keys to
source code.

● Use Cloud Audit Logging to regularly audit changes to your IAM policy and
export logs to Cloud Storage.

● Set organization-level IAM policies to grant access to all projects in your
organization and grant roles to a Google group instead of to individual users
when possible.

https://cloud.google.com/iam/docs/using-iam-securely

