
Proprietary + Confidential

Kubernetes
Architecture

Welcome to the Kubernetes Architecture module of our course. It helps to know the
parts of Kubernetes and to understand the philosophy it implements. How does
Kubernetes expect you to tell it what to do? And what choices do you have for
describing your workloads? That’s the theme of this module.

Proprietary + Confidential

Learn how to ...

Understand Kubernetes objects
and the Kubernetes control plane.

Deploy a Kubernetes cluster using
Google Kubernetes Engine (GKE).

Deploy Pods to a GKE cluster.

View and manage Kubernetes
objects.

In this module you’ll learn how to understand how the Kubernetes architecture is laid
out, deploy a Kubernetes cluster using Google Kubernetes Engine, deploy Pods to a
GKE cluster, and, view and manage several very useful kinds of Kubernetes objects.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

In this lesson, we’ll lay out the fundamental components of the Kubernetes operating
philosophy.
To understand how Kubernetes works, there are two related concepts you need to
understand. The first is the Kubernetes object model. Each thing Kubernetes
manages is represented by an object, and you can view and change these objects’
attributes and state. The second is the principle of declarative management.
Kubernetes expects you to tell it what you want the state of the objects under its
management to be; it will work to bring that state into being and keep it there. How
does it do that? By means of its so-called “watch loop.”

Proprietary + Confidential

Kubernetes objects

Desired state described
by us

Object spec

Persistent entities representing the state
of the cluster

Current state described
by Kubernetes

Object status

There are two elements to Kubernetes objects

Formally, a Kubernetes object is defined as a persistent entity that represents the
state of something running in a cluster: its desired state and its current state. Various
kinds of objects represent containerized applications, the resources that are available
to them, and the policies that affect their behavior. Kubernetes objects have two
important elements.

You give Kubernetes an Object spec for each object you want to create. With this
spec, you define the desired state of the object by providing the characteristics that
you want.

The Object status is simply the current state of the object provided by the Kubernetes
control plane. By the way, we use this term “Kubernetes control plane” to refer to the
various system processes that collaborate to make a Kubernetes cluster work. You’ll
learn about these processes later in this module.

Proprietary + Confidential

Pod

Container Container Container

Shared networking

Shared storage

Containers in a Pod share resources

Each object is of a certain type, or “Kind,” as Kubernetes calls them. Pods are the
basic building block of the standard Kubernetes model, and they’re the smallest
deployable Kubernetes object. Maybe you were expecting me to say that the smallest
Kubernetes object is the container. Not so. Every running container in a Kubernetes
system is in a Pod.

A Pod embodies the environment where the containers live, and that environment can
accommodate one or more containers.

If there is more than one container in a pod, they are tightly coupled and share
resources including networking and storage. Kubernetes assigns each Pod a unique
IP address. Every container within a Pod shares the network namespace, including IP
address and network ports. Containers within the same Pod can communicate
through localhost, 127.0.0.1. A Pod can also specify a set of storage Volumes, to be
shared among its containers.

Proprietary + Confidential

Kubernetes launches those objects and maintains them

You want three nginx containers running all the time

You declare objects that represent those containers

Running three nginx containers

Let’s consider a simple example where you want three instances of the nginx Web
server, each in its own container, running all the time.

How is this achieved in Kubernetes? Remember that Kubernetes embodies the
principle of declarative management. You declare some objects to represent those
nginx containers. What Kind of object? Perhaps Pods.

Now it is Kubernetes’s job to launch those Pods and keep them in existence. Be
careful: Pods are not self-healing. If we want to keep all our nginx Web servers not
just in existence but also working together as a team, we might want to ask for them
using a more sophisticated Kind of object. I’ll tell you how later in this module.

Proprietary + Confidential

Desired state compared to current state

Desired state
(Kubernetes objects)

Current state ? ? ?
Kubernetes Control

Plane
Remediation

actions

Let’s suppose we have given Kubernetes a desired state that consists of three nginx
Pods, always kept running. We did this by telling Kubernetes to create and maintain
one or more objects that represent them.

Now Kubernetes compares the desired state to the current state. Let’s imagine that
our declaration of three nginx containers is completely new. The current state does
not match the desired state.

So Kubernetes, specifically its control plane, will remedy the situation. Because the
number of desired Pods running for the object we declared is 3, and 0 are presently
running, 3 will be launched.

And the Kubernetes control plane will continuously monitor the state of the cluster,
endlessly comparing reality to what has been declared, and remedying the state as
needed.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

In the previous lesson, I mentioned the Kubernetes control plane, which is the fleet of
cooperating processes that make a Kubernetes cluster work. Even though you’ll only
work directly with a few of these components, it helps to know about them and the
role each plays. I’ll build up a Kubernetes cluster part by part, explaining each piece
as I go. After I’m done, I’ll show you how a Kubernetes cluster running in GKE is a lot
less work to manage than one you provisioned yourself.

Proprietary + Confidential

Cluster

Cooperating processes make a Kubernetes cluster
work

Control plane
kubectl

kube-
APIserver

kube-
scheduler

kube-
cloud-

manager

kube-
controller-
manager

etcd

First and foremost, your cluster needs computers. Nowadays the computers that
compose your clusters are usually virtual machines. They always are in GKE, but they
could be physical computers too. One computer is called the “control plane,” and the
others are called simply “nodes.” The job of the nodes is to run Pods. The job of the
control plane is to coordinate the entire cluster. We will discuss its control-plane
components first.

Several critical Kubernetes components run on the control plane. The single
component that you interact with directly is the kube-apiserver. This component’s job
is to accept commands that view or change the state of the cluster, including
launching Pods.

You will use the kubectl command frequently; this command’s job is to connect to
kube-apiserver and communicate with it using the Kubernetes API. kube-apiserver
also authenticates incoming requests, determines whether they are authorized and
valid, and manages admission control. But it’s not just kubectl that talks with
kube-apiserver. In fact, any query or change to the cluster’s state must be addressed
to the kube-apiserver.

etcd is the cluster’s database. Its job is to reliably store the state of the cluster. This
includes all the cluster configuration data; and more dynamic information such as

what nodes are part of the cluster, what Pods should be running, and where they
should be running. You never interact directly with etcd; instead, kube-apiserver
interacts with the database on behalf of the rest of the system.

kube-scheduler is responsible for scheduling Pods onto the nodes. To do that, it
evaluates the requirements of each individual Pod and selects which node is most
suitable. But it doesn’t do the work of actually launching Pods on Nodes. Instead,
whenever it discovers a Pod object that doesn’t yet have an assignment to a node, it
chooses a node and simply writes the name of that node into the Pod object. Another
component of the system is responsible for then launching the Pods, and you will see
it very soon.

But how does kube-scheduler decide where to run a Pod? It knows the state of all the
nodes, and it will also obey constraints that you define on where a Pod may run,
based on hardware, software, and policy. For example, you might specify that a
certain Pod is only allowed to run on nodes with a certain amount of memory. You can
also define affinity specifications, which cause groups of pods to prefer running on the
same node; or anti-affinity specifications, which ensure that pods do not run on the
same node. You will learn more about some of these tools in later modules.

kube-controller-manager has a broader job. It continuously monitors the state of a
cluster through Kube-APIserver. Whenever the current state of the cluster doesn’t
match the desired state, kube-controller-manager will attempt to make changes to
achieve the desired state. It’s called the “controller manager” because many
Kubernetes objects are maintained by loops of code called controllers. These loops of
code handle the process of remediation. Controllers will be very useful to you. To be
specific, you’ll use certain kinds of Kubernetes controllers to manage workloads. For
example, remember our problem of keeping 3 nginx Pods always running. We can
gather them into a controller object called a Deployment that both keeps them running
and lets us scale them and bring them together underneath a front end. We’ll meet
Deployments later in this module.

Other kinds of controllers have system-level responsibilities. For example, Node
Controller’s job is to monitor and respond when a node is offline.
kube-cloud-manager manages controllers that interact with underlying cloud
providers. For example, if you manually launched a Kubernetes cluster on Google
Compute Engine, kube-cloud-manager would be responsible for bringing in Google
Cloud features like load balancers and storage volumes when you needed them.

Proprietary + Confidential

Cooperating processes make a Kubernetes cluster
work

Cluster

Control plane
kubectl

kube-
APIserver

kube-
scheduler

kube-
cloud-

manager

kube-
controller-
manager

etcd

Node Node Node

Kubelet Kubelet Kubelet

Kube-proxy Kube-proxy Kube-proxy

Each node runs a small family of control-plane components too.

For example, each node runs a kubelet. You can think of kubelet as Kubernetes’s
agent on each node. When the kube-apiserver wants to start a Pod on a node, it
connects to that node’s kubelet. Kubelet uses the container runtime to start the Pod
and monitors its lifecycle, including readiness and liveness probes, and reports back
to Kube-APIserver. Do you remember our use of the term “container runtime” in the
previous module? This is the software that knows how to launch a container from a
container image. The world of Kubernetes offers several choices of container
runtimes, but the Linux distribution that GKE uses for its nodes launches containers
using containerd, the runtime component of Docker.

kube-proxy’s job is to maintain network connectivity among the Pods in a cluster. In
open-source Kubernetes, it does so using the firewalling capabilities of iptables, which
are built into the Linux kernel. Later, we will learn how GKE handles pod networking.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Next, we’ll introduce concepts specific to Google Kubernetes Engine. That diagram of
the Kubernetes control plane had a lot of components, didn’t it? Setting up a
Kubernetes cluster by hand is tons of work.

Proprietary + Confidential

A comparison of the two GKE offerings

Autopilot mode

● Optimized Managed Kubernetes with
hands-off experience

● Less management overhead, but less
configuration abilities

● Only pay for what you use (Pod pricing)

Standard mode

● Managed Kubernetes with
configuration flexibility

● More management overhead but fine
grained configuration.

● Pay for all provisioned infrastructure,
regardless of utilization

GKE is available in two modes of operation, Autopilot and Standard mode.

Autopilot is a new mode of operation in GKE that manages the entire cluster’s
infrastructure, including control plane, node-pools and nodes. By managing the entire
cluster, Google monitors and managed all operational aspects of the cluster, including
control plane, worker nodes and core Kubernetes system components, ensuring your
workloads always as a place to run. Autopilot is a fully managed Kubernetes cluster
bringing together the best of GKE advances in scaling, security and Day 2 operations
into a Google SRE managed and optimized kubernetes cluster

Standard mode has all of the same functionality as Autopilot but you are responsible
for the configuration, management, and optimization of the cluster to your
requirements.

Google Cloud advises that unless you have a specific reason to need the level of
configuration control that standard offers, you should always use Autopilot mode.

Proprietary + Confidential

GKE manages the cluster infrastructure for you

Application containers (base image,
dependencies and application code)

GKE/K8s system components (logging, DNS etc.)
Kubernetes workers (node pools & worker nodes)

Kubernetes control plane

Container runtime

Container-optimized OS

Virtualization, Network

Hardware

Standard mode

Autopilot mode

Configuration flexibility

Optimized, managed Kubernetes

Mixed responsibility
for nodes

Modern application
platform

So lets recap, Autopilot is a new mode of operation in GKE that manages the entire
cluster’s infrastructure, including control plane, node-pools and nodes. By managing
the entire cluster, Google monitors and manages all operational aspects of the
cluster, including control plane, worker nodes and core Kubernetes system
components, ensuring your workloads always have a place to run. Autopilot is a fully
managed Kubernetes cluster bringing together the best of GKE advances in scaling,
security and Day 2 operations into a Google SRE managed and optimized kubernetes
cluster.

Standard mode has all of the same functionality as Autopilot but you are responsible
for the configuration, management, and optimization of the cluster to your
requirements.

Google Cloud advises that unless you have a specific reason to need the level of
configuration control that standard offers, you should always use Autopilot mode.

Proprietary + Confidential

Cluster

GKE manages all the control plane components

Control plane
kubectl

Cluster IP

kube-
scheduler

kube-
cloud-

manager

kube-
controller-
manager

etcd

Fortunately, there is an open-source command called kubeadm that can automate
much of the initial setup of a cluster. But if a node fails or needs maintenance, a
human administrator has to respond manually. I suspect you can see why many
people like the idea of a managed service for Kubernetes. You may be wondering
how that picture we just saw differs for GKE. Well, here it is:

From the user’s perspective, it’s a lot simpler. GKE manages all the control plane
components for us. It still exposes an IP address to which we send all of our
Kubernetes API requests, but GKE takes responsibility for provisioning and managing
all the control plane infrastructure behind it. It also abstracts away having a separate
control plane.

Proprietary + Confidential

Cluster

GKE cluster nodes

Control plane
kubectl

Cluster IP

kube-
scheduler

kube-
cloud-

manager

kube-
controller-
manager

etcd

Node Node Node

Kubelet Kubelet Kubelet

Kube-proxy Kube-proxy Kube-proxy

Standard mode: You create and manage nodes in node pools.
Autopilot mode: Google manages nodes.

For the nodes configuration and management, it depends on the type of GKE mode
that you are using.

● Autopilot mode (recommended): GKE manages the underlying infrastructure
such as node configuration, autoscaling, auto-upgrades, baseline security
configurations, and baseline networking configuration.

● Standard mode: You manage the underlying infrastructure, including
configuring the individual nodes.

Proprietary + Confidential

Kubernetes doesn’t create nodes.
Cluster admins create nodes and add them to Kubernetes.

GKE manages this by deploying and registering Compute Engine
instances as nodes.

More about nodes for GKE Standard mode

Now let’s talk about nodes. In any Kubernetes environment, nodes are created
externally by cluster administrators, not by Kubernetes itself.

GKE automates this process for you. It launches Compute Engine virtual machine
instances and registers them as nodes. You can manage node settings directly from
the Cloud Console. You are charged per second of allocated time for your nodes (not
counting the control plane).

Proprietary + Confidential

More about nodes for GKE Standard mode

Because nodes run on Compute Engine, you choose your node machine type when
you create your cluster. By default, the node machine type is e2-medium, which
provides 2vCPU, and 4 gigabytes of memory. Google Cloud offers a wide variety of
Compute Engine options. At the time this course was developed, the generally
available maximum was 416 vCPU cores. That’s a moderately big virtual machine.

You can customize your nodes’ number of cores and their memory capacity. You can
select a CPU platform.

You can choose a baseline minimum CPU platform for the nodes or node pool. This
allows you to improve node performance. GKE will never use a platform that is older
than the CPU platform you specify, and if it picks a newer platform, the cost will be
same as the specified platform.

Proprietary + Confidential

GKE Standard mode uses node pools to manage
different kinds of nodes

Cluster

Node pool for big nodes

Node Node Node

Node pool for small nodes

Node Node

Node Node

You can also select multiple node machine types by creating multiple node pools. A
node pool is a subset of nodes within a cluster that share a configuration, such as
their amount of memory, or their CPU generation. Node pools also provide an easy
way to ensure that workloads run on the right hardware within your cluster: you just
label them with a desired node pool.

By the way, node pools are a GKE feature rather than a Kubernetes feature. You can
build an analogous mechanism within open-source Kubernetes, but you would have
to maintain it yourself.

You can enable automatic node upgrades, automatic node repairs, and cluster
autoscaling at this node pool level.

Here’s a word of caution. Some of each node's CPU and memory are needed to run
the GKE and Kubernetes components that let it work as part of your cluster. So, for
example, if you allocate nodes with 15 gigabytes of memory, not quite all of that 15
gigabytes will be available for use by Pods. This module has a documentation link that
explains how much CPU and memory are reserved.

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture

Proprietary + Confidential

Zonal versus regional clusters

Zone

Cluster

Node

Control plane

Node Node

Region

Zone Zone Zone

Cluster

Node

Control
plane

Node Node

Control
plane

Control
plane

Node Node Node

Node Node Node

Standard mode: GKE cluster location type can be Zonal or Regional
Autopilot mode: GKE cluster location type always Regional

By default, for GKE cluster standard mode launches in a single Google Cloud
compute zone with three identical nodes, all in one node pool. The number of nodes
can be changed during or after the creation of the cluster. Adding more nodes and
deploying multiple replicas of an application will improve an application’s availability.
But only up to a point. What happens if the entire compute zone goes down?

You can address this concern by using a GKE regional cluster. Regional clusters have
a single API endpoint for the cluster. However, its control planes and nodes are
spread across multiple Compute Engine zones within a region.

Regional clusters ensure that the availability of the application is maintained across
multiple zones in a single region. In addition, the availability of the control plane is
also maintained so that both the application and management functionality can
withstand the loss of one or more, but not all, zones. By default, a regional cluster is
spread across 3 zones, each containing 1 control plane and 3 nodes. These numbers
can be increased or decreased. For example, if you have five nodes in Zone 1, you
will have exactly the same number of nodes in each of the other zones, for a total of
15 nodes. Once you build a zonal cluster, you can’t convert it into a regional cluster,
or vice versa.

Proprietary + Confidential

Cluster

Node

Control plane

Node Node

Google Cloud
products

Internet

Authorized
networks

A regional or zonal GKE cluster can also be set up as
a private cluster

The entire cluster (that is, the control plane and its nodes) are hidden from the public
internet.

Cluster control planes can be accessed by Google Cloud products, such as Cloud
Logging or Cloud Monitoring, through an internal IP address.

They can also be accessed by authorized networks through an external IP address.
Authorized networks are basically IP address ranges that are trusted to access the
control plane. In addition, nodes can have limited outbound access through Private
Google Access, which allows them to communicate with other Google Cloud services.
For example, nodes can pull container images from Container Registry without
needing external IP addresses.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Finally, we’ll discuss Kubernetes object management. All Kubernetes objects are
identified by a unique name and a unique identifier.

Proprietary + Confidential

Running three nginx containers

You want three nginx containers running all the time

How do we create Pods for these containers?

Kubernetes Objects
Object Spec

(Desired state)

Let’s return once again to our example, in which we want three nginx Web servers
running all the time.

Well, the simplest way would before us to declare three Pod objects and specify their
state: that, for each, a Pod must be created and an nginx container image must be
used. Let’s see how we declare this.

Proprietary + Confidential

Objects are defined in a YAML file

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
labels:

app: nginx
spec:

containers:
 - name: nginx
 image: nginx:latest

You define the objects you want Kubernetes to create and maintain with manifest
files. These are ordinary text files. You may write them in YAML or JSON format.
YAML is more human-readable and less tedious to edit. This YAML file defines a
desired state for a pod: its name and a specific container image for it to run.

Your manifest files have certain required fields. ApiVersion describes which
Kubernetes API version is used to create the object. The Kubernetes protocol is
versioned so as to help maintain backwards compatibility.

Kind identifies the object you want (in this case a Pod) and Metadata helps identify
the object using Name, Unique ID, and an optional Namespace. You can define
several related objects in the same YAML file, and it is a best practice to do so. One
file is often easier to manage than several.

Proprietary + Confidential

Best practice tip: Use version control on YAML files

v1 v2 v3 v4

Another, even more important tip: You should save your YAML files in
version-controlled repositories. This practice makes it easier to track and manage
changes and to back-out those changes when necessary. It’s also a big help when
you need to recreate or restore a cluster. Many Google Cloud customers use Cloud
Source Repositories for this purpose, because that service lets them control the
permissions of those files in the same way as their other Google Cloud resources.

Proprietary + Confidential

All objects are identified by a name

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
[...]

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
[...]

Cannot have
two of the
same object
types with
same names

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
[...]

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
[...]

If an object is
deleted, the
name can be
reused

X

When you create a Kubernetes object, you name it with a string. Names must be
unique. Only one object of a particular kind can have a particular name at the same
time in the same Kubernetes namespace. However, if an object is deleted, its name
can be reused. Alphanumeric characters, hyphens, and periods are allowed in the
names, with a maximum character length of 253.

Proprietary + Confidential

All objects are assigned a unique identifier (UID) by
Kubernetes

apiVersion: apps/v1
kind: Pod
metadata:
name: nginx

 uid: 4dd474fn-f389-11f8-b38c-42010a8009z7
[...]

Every object created throughout the life of a cluster has a unique UID generated by
Kubernetes. This means that no two objects will have same UID throughout the life of
a cluster.

Proprietary + Confidential

apiVersion: apps/v1
kind: Pod
metadata:

name: nginx
labels:

app: nginx
env: dev
stack: frontend

spec:
selector:

matchLabels:
app: nginx

Admin issues a command

 kubectl get pods --selector=app=nginx

Labels can be matched by label selectors

Labels are key-value pairs with which you tag your objects during or after their
creation. Labels help you identify and organize objects and subsets of objects. For
example, you could create a label called “app” and give as its value the application of
which this object is a part.

In this simple example, a Pod object is labeled with three different key-values: its
application, its environment, and which stack it forms a part of.

Various contexts offer ways to select Kubernetes resources by their labels. Here’s an
example of using it to show all the pods that contain a label called “app” with a value
of “nginx.” Label selectors are very expressive. You can ask for all the resources that
have a certain value for a label, all those that don’t have a certain value, or even all
those that have a value in a set you supply.

Proprietary + Confidential

A workload is spread evenly across available nodes
by default

Node Node Node

nginx Pod nginx Pod nginx Pod

Pod1.yaml Pod2.yaml Pod3.yaml

So one way to bring three nginx Web servers into being would be to declare three
Pod objects, each with its own section of YAML. Kubernetes’s default scheduling
algorithm prefers to spread the workload evenly across the nodes available to it, so
we’d get a situation like this one. Looks good, doesn’t it? Maybe not. Suppose I want
200 more nginx instances. Managing 200 more sections of YAML sounds very
inconvenient.

Proprietary + Confidential

Pods have a life cycle

nginx Pod

Pod is “born”

nginx Pod

Pod is running

nginx Pod

Pod is broken

nginx Pod

Pod “dies”

Here’s another problem: Pods don’t heal or repair themselves, and are not meant to
run forever. They are designed to be ephemeral and disposable.

For these reasons, there are better ways to manage what you run in Kubernetes than
specifying individual Pods. You need a setup like this to maintain an application’s high
availability along with horizontal scaling.

So how do you tell Kubernetes to maintain the desired state of three nginx
containers?

Proprietary + Confidential

Pods and Controller Objects

Controller

Controller object
types

● Deployment
● StatefulSet
● DaemonSet
● Job

nginx Pod nginx Pod nginx Pod

We can instead declare a controller object whose job is to manage the state of the
Pods. Some examples of these objects: Deployments, StatefulSets, DaemonSets,
and Jobs.

Proprietary + Confidential

You want three nginx containers running all the time

How does Kubernetes maintain 3 nginx containers at any given time?

Deployments are a great choice for long-lived
software components

Deployments are a great choice for long-lived software components like Web servers,
especially when we want to manage them as a group.

Proprietary + Confidential

nginx-deployment.yaml

A Deployment maintains the desired state

Cluster
Control plane

kubectl

Cluster IP

kube-
scheduler

kube-
cloud-

manager

kube-
controller-
manager

etcd

Node Node Node

Kubelet Kubelet Kubelet

Kube-proxy Kube-proxy Kube-proxy

nginx Pod nginx Pod nginx Pod

nginx Pod

In our example, when Kube-scheduler schedules Pods for a Deployment, it notifies
the Kube-APIserver.
These changes are constantly monitored by controllers—especially by the
Deployment controller. The practical effect of the Deployment controller is to monitor
and maintain 3 nginx Pods.

The Deployment controller creates a child object, a ReplicaSet, to launch the desired
Pods. If one of these Pods fails, the ReplicaSet controller will recognize the difference
between the current state and the desired state and will try to fix it by launching a new
Pod. Instead of using multiple yaml manifests or files for each Pod, you used a single
Deployment yaml to launch 3 replicas of the same container.

Proprietary + Confidential

Deployments ensure that sets of Pods are running
apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3
template:

 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest

A Deployment ensures that a defined set of Pods is running at any given time.

Within its object spec, you specify how many replica Pods you want, how Pods should
run, which containers should run within these Pods, and which Volumes should be
mounted. Based on these templates, controllers maintain the Pod’s desired state
within a cluster. Controllers are discussed later in the course.

Deployments can also do a lot more than this, which you will see later in the course.

Proprietary + Confidential

Resource management for Pods and Containers

Important that containers have enough resources to run.

Applications could use more resources than they should.

CPU and memory (RAM) resources are the most common resources specified.

When Kubernetes schedules a Pod, it’s important that the containers have enough
resources to actually run. If you schedule a large application on a node with limited
resources, it is possible for the node to run out of memory or CPU resources and for
things to stop working!

It’s also possible for applications to take up more resources than they should. This
could be caused by a team spinning up more replicas than they need,possibly to
artificially decrease latency, or to a bad configuration change that causes a program
to go out of control and use 100% of the available CPU. Regardless of whether the
issue is caused by a bad developer, bad code, or bad luck, what’s important is that
you are in control.

When you specify a Pod, you can optionally specify how much of each resource a
container needs. The most common resources to specify are CPU and memory
(RAM); however, there are others. Let's take a look at the mechanisms Kubernetes
uses to control these resources.

Proprietary + Confidential

Namespaces provide scope for naming resources
Cluster

Node Node Node

Namespace Test

Namespace Stage

Namespace Prod

nginx Pod

nginx Pod

nginx Pod

nginx Pod

So how do you keep everybody’s work on your cluster tidy and organized?
Kubernetes allows you to abstract a single physical cluster into multiple virtual
clusters known as namespaces. Namespaces provide scope for naming resources
such as Pods, Deployments, and controllers.

As you can see in this example, there are three namespaces in this cluster: test,
stage, and prod.

Remember that you cannot have duplicate object names in the same namespace.
You can create three Pods with the same name (nginx), but only if they don’t share
the same namespace. If you attempt to create another Pod with same the name
‘nginx Pod’ in namespace “test”, you won’t be allowed. Object names need only be
unique within a namespace, not across all namespaces. Namespaces also let you
implement resource quotas across the cluster. These quotas define limits for resource
consumption within a namespace. They’re not the same as your Google Cloud
quotas, which we discussed in an earlier module. These quotas apply specifically to
the Kubernetes cluster they’re defined on.

You’re not require to use namespaces for your day-to-day management; you can also
use labels. Still, namespaces are a valuable tool. Suppose you want to spin up a copy
of a deployment as a quick test. Doing so in a new namespace makes it easy and

free of name collisions.

Proprietary + Confidential

Cluster

There are three initial namespaces in a cluster

Node Node Node

Default

Kube-system

Kube-public

Pods

ConfigMap

Deployments

Secrets
Controllers

Deployments

The first is a default namespace, for objects with no other namespace defined. Your
workload resources will use this namespace by default.

Then there is the kube-system namespace for objects created by the Kubernetes
system itself. When you use the kubectl command, by default items in the
kube-system namespace are excluded, but you can choose to view its contents
explicitly.

The third namespace is the kube-public namespace for objects that are publicly
readable to all users. kube-public is a tool for disseminating information to everything
running in a cluster. You’re not required to use it, but it can come in handy, especially
when everything running in a cluster is related to the same goal and needs
information in common.

Proprietary + Confidential

apiVersion: v1
kind: Pod
metadata:
 name: mypod
namespaces: demo

Most flexible: kubectl -n demo apply -f mypod.yaml

Legal but less flexible:

Best practice tip: namespace-neutral YAML

You can apply a resource to a namespace when creating it, using a command-line
namespace flag. Or, you can specify a namespace in the YAML file for the resource.
Whenever possible, apply namespaces at the command line level. This practice
makes your YAML files more flexible. For example, someday you might want to create
two identical but completely independent instances of one of your deployments, each
in its own namespace. This could be the case if you want to deploy into a separate
namespaces for testing before deploying into production. This is difficult if you have
chosen to embed namespace names in your YAML files.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Proprietary + Confidential

Lab Intro
Deploying Google Kubernetes
Engine

In this lab, you’ll build and use GKE clusters and deploy a sample Pod. The tasks that
you’ll learn to perform include using the Cloud Console to build and manipulate GKE
clusters, deploy a Pod, and examine the cluster and Pods.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Proprietary + Confidential

Migrate for Anthos moves VMs to containers

Move and convert workloads into containers.

Workloads can start as physical servers or VMs.

Moves workload compute to container immediately (<10 min).

Data can be migrated all at once or "streamed" to the cloud
until the app is live in the cloud.

Migrate for Anthos moves your existing applications into a Kubernetes environment
and the best thing about this is that the process is automated!

Your workloads can be on-premises or in other cloud providers.

You know that Migrate for Anthos is automated, but it is also very fast.

Most migrations are completed in less than 10 minutes.

And you have the choice to migrate your applications data in one move, or to stream
it to the cloud until the app is live.

Let's have a quick overview of what happens in a migration.

Proprietary + Confidential

A migration requires an architecture to be built

Migrate for Compute Engine

Migrate Manager
Compute Engine

Edge Nodes
Compute Engine

Cache
Cloud Storage

on-premises/cloud

Local
Compute

Local
Compute

Local
Compute

Migrate for Anthos

Processing Cluster
Google Kubernetes Engine

Artifacts
Cloud Storage

CRD SC CSI ... yaml yamlyamlDocker

Images
Container Registry

imageimage

Production project

Prod Cluster
Google Kubernetes Engine

app

First let’s inspect the architecture required for a migration

The first step is to allow Migrate for Compute Engine to create the pipeline for
streaming/migrating data from on-premises or cloud systems into Google Cloud.
Migrate for Compute Engine is a tool that allows you to bring your existing
applications into VMs on Google Cloud.

Migrate for Anthos is then installed on a GKE processing cluster, and is composed of
many Kubernetes resources.

Migrate for Anthos is used to generate the deployment artifacts.

Some of these artifacts, like the Kubernetes configurations and the Docker file, are
used to create the VM-wrapping container. This container goes into Cloud Storage.

The container images themselves are stored in Container Registry.

After the deployment assets are created, they can be used to deploy your application
into a target cluster.

You simply apply the generated configuration, and it creates the necessary
Kubernetes elements on the target cluster.

Proprietary + Confidential

A migration is a multi-step process

1

Configure
processing

cluster

Add migration
source

2

Generate and
review plan

3

Generate
artifacts

4

Test

5

Deploy

6

Now that you have seen the architecture required for a migration, let's look at what
happens when you migrate an application using Migrate for Anthos.

1. First you need to create the processing cluster. After that, you install the
Migrate for Anthos components onto that cluster.

2. Next you need to add a migration source.
You can migrate from VMware, AWS, Azure, or Google Cloud.

3. You will need to create a migration object with the details of the migration that
you are performing.
This will generate a plan template for you in a YAML file.
You may need to alter this configuration file to create the level of customization
you desire.
When the plan is ready, you will need to generate the artifacts for the
migration.
This means generating the container images of your applications and the
YAML files required for the deployment.

4. After your migration artifacts have been generated, they need to be tested.
Both the container images and the deployment will be tested at this stage.

5. Finally, if the tests are successful, you can use the generated artifacts to
deploy your application to your production clusters.

https://cloud.google.com/migrate/anthos/docs/migration-journey

https://cloud.google.com/migrate/anthos/docs/migration-journey

Proprietary + Confidential

Migrate for Anthos requires a processing cluster

Processing Cluster
Google Kubernetes Engine

gcloud container --project $PROJECT_ID \
clusters create $CLUSTER_NAME \
--zone $CLUSTER_ZONE \
--username "admin" \
--cluster-version 1.14 \
--machine-type "n1-standard-4" \
--image-type "UBUNTU" \
--num-nodes 1 \
--enable-stackdriver-kubernetes \
--scopes "cloud-platform" \
--enable-ip-alias \
--tags="http-server"

Let’s go through an example to see what happens at each stage.

The first thing you will do is set up the processing cluster.

Before you run the command on screen, you need to make sure that you are a GKE
admin to set up the cluster.

You also must have firewall rules in place that allow communications between Migrate
for Anthos and Migrate for Compute Engine.

After that is done, you can create the processing cluster.

The example command enables a VPC-native cluster.

https://cloud.google.com/migrate/anthos/docs/configuring-a-cluster

https://cloud.google.com/migrate/anthos/docs/configuring-a-cluster

Proprietary + Confidential

Installing Migrate for Anthos uses migctl

Processing Cluster
Google Kubernetes Engine

migctl setup install

namespaces

serviceaccounts

roles/clustroles

rolebindings/
clusterrolebindings

configmaps

services

statefulsets

daemonsets

job

storageclass

CRD

When the processing cluster is up and running, you need to install Migrate for Anthos
using the migctl command. This command installs all of the required Kubernetes
resources onto the processing cluster for the migration.

Proprietary + Confidential

Adding a source enables migrations from a specific
environment

migctl source create ce my-ce-src --project my-project --zone zone

migctl source create ce my-ce-src --project my-project --zone zone

The migctl source create command specifies the location of the application to
migrate.

The example on screen is for migrating from Google Compute Engine.

If you are migrating from a VMware backend or another cloud provider, you need to
install some additional packages.

Proprietary + Confidential

Creating a migration generates a migration plan

migctl migration create test-migration --source my-ce-src --vm-id my-id --intent Image

Now that the infrastructure elements are set up, the next step is to create a migration
plan.

The migctl migration create command will create a migration plan.

This command will define the migration resources that will be created on cluster.

You identify the source VM and what data to exclude in the migration.

You can also specify what migration intents you want.

You can specify the following intents:
● Image
● ImageAndData
● Data
● PvBasedContainer

Proprietary + Confidential

Executing a migration generates resources and
artifacts

Processing Cluster
Google Kubernetes Engine

migctl migration generate-artifacts my-migration

CRD

Container Images
Container Registry

DOCKER/YAML files
Cloud Storage

DOCKER YAML files Images

After creating a migration plan, you need to generate the artifacts for the migration.
The migctl migration generate artifacts command on screen will start this process.

This process will first copy files and directories representing the VM to a container
image registry as images.

Migrate for Anthos creates two images: a runnable image for deployment to another
cluster and a non-runnable image layer that can be used to update the container
image in the future.

Next Migrate for Anthos with generate configuration YAML files that you can use to
deploy the VM to another GKE cluster.

These are copied into a Cloud Storage bucket as an intermediate location.

Proprietary + Confidential

Deployment files typically need modification

migctl migration get-artifacts test-migration

You run the migctl migration get-artifacts to download the YAML configuration files
generated from the last step.

The YAML configuration defines resources to deploy, such as:

● Are you creating a Deployment or a StatefulSet?
● Is the deployment a Headless service?
● Are you using PersistentVolumes or PersistentVolumeClaims?

You can edit the YAML file to customize the deployment. Examples of customizations
include:

● To enable load-balancing
● To allow ingress
● To define disk size

https://cloud.google.com/migrate/anthos/docs/review-deployment-files

https://cloud.google.com/migrate/anthos/docs/review-deployment-files

Proprietary + Confidential

Apply the configuration to deploy the workload

kubectl apply -f deployment_spec.yaml

Finally, you run the kubectl apply command to deploy the defined spec.

https://cloud.google.com/migrate/anthos/docs/review-deployment-files

https://cloud.google.com/migrate/anthos/docs/review-deployment-files

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Proprietary + Confidential

Question

What is the difference between a pod and a container?

A. A container contains one or more pods.

B. A pod contains one or more containers.

C. Pods and containers are two names for the same thing.

Question #1

Proprietary + Confidential

Answer

What is the difference between a pod and a container?

A. A container contains one or more pods.

B. A pod contains one or more containers.

C. Pods and containers are two names for the same thing.

Question #1

A: Incorrect.
B: Correct.
Feedback: The containers within a pod are tightly coupled with one another and can
communicate using the localhost IP address.
C: Incorrect.

Proprietary + Confidential

Question

You are designing an application, and you want to ensure that the containers are located
as close to each other as possible, in order to minimize latency. Which design decision
helps meet this requirement?

A. Give the containers the same labels.

B. Place the containers in the same cluster.

C. Place the containers in the same Namespace.

D. Place the containers in the same Pod.

Question #2

Proprietary + Confidential

Answer

You are designing an application, and you want to ensure that the containers are located
as close to each other as possible, in order to minimize latency. Which design decision
helps meet this requirement?

A. Give the containers the same labels.

B. Place the containers in the same cluster.

C. Place the containers in the same Namespace.

D. Place the containers in the same Pod.

Question #2

A: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.
B: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.
C: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.
D: Correct.
Feedback: Placing containers in the same Pod ensures they are scheduled together
on the same node, minimizing latency.

Proprietary + Confidential

Question

Which Kubernetes component does the kubectl command connect to in order to carry
out operations on a cluster?

A. kube-apiserver

B. kube-controller-manager

C. kube-dns

D. kube-scheduler

Question #3

Proprietary + Confidential

Answer

Which Kubernetes component does the kubectl command connect to in order to carry
out operations on a cluster?

A. kube-apiserver

B. kube-controller-manager

C. kube-dns

D. kube-scheduler

Question #3

A: Correct.
B: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.
C: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.
D: Incorrect.
Feedback: Review the lesson on Kubernetes Concepts.

Proprietary + Confidential

Question

Which control plane component is the only one with which clients interact directly?

A. etcd

B. kube-apiserver

C. kube-controller-manager

D. kube-scheduler

Question #4

Proprietary + Confidential

Answer

Which control plane component is the only one with which clients interact directly?

A. etcd

B. kube-apiserver

C. kube-controller-manager

D. kube-scheduler

Question #4

A: Incorrect.
B: Correct.
C: Incorrect.
D: Incorrect.

Proprietary + Confidential

Question

Which control plane component is the cluster's database?

A. etcd

B. kube-apiserver

C. kube-controller-manager

D. kube-scheduler

Question #5

Proprietary + Confidential

Answer

Which control plane component is the cluster's database?

A. etcd

B. kube-apiserver

C. kube-controller-manager

D. kube-scheduler

Question #5

A: Correct.
B: Incorrect.
C: Incorrect.
D: Incorrect.

Proprietary + Confidential

Question

What is the role of the kubelet?

A. To interact with underlying cloud providers.

B. To maintain network connectivity among the Pods in a cluster.

C. To serve as Kubernetes’s agent on each node.

Question #6

Proprietary + Confidential

Answer

What is the role of the kubelet?

A. To interact with underlying cloud providers.

B. To maintain network connectivity among the Pods in a cluster.

C. To serve as Kubernetes’s agent on each node.

Question #6

A: Incorrect.
B: Incorrect
C: Correct.

Proprietary + Confidential

Question

In GKE clusters, how are nodes provisioned?

A. As abstract parts of the GKE service that are not exposed to Google Cloud
customers.

B. As Compute Engine virtual machines.

Question #7

Proprietary + Confidential

Answer

In GKE clusters, how are nodes provisioned?

A. As abstract parts of the GKE service that are not exposed to Google Cloud
customers.

B. As Compute Engine virtual machines.

Question #7

A: Incorrect.
B: Correct.

Proprietary + Confidential

Question

In GKE, how are control planes provisioned?

A. As abstract parts of the GKE service that are not exposed to Google Cloud
customers.

B. As Compute Engine virtual machines.

Question #8

Proprietary + Confidential

Answer

In GKE, how are control planes provisioned?

A. As abstract parts of the GKE service that are not exposed to Google Cloud
customers.

B. As Compute Engine virtual machines.

Question #8

A: Correct.
B: Incorrect

Proprietary + Confidential

Question

What is the purpose of configuring a regional cluster in GKE?

A. To allow applications running in the cluster to withstand the loss of a zone.

B. To ensure that the cluster's workloads are isolated from the public Internet.

Question #9

Proprietary + Confidential

Answer

What is the purpose of configuring a regional cluster in GKE?

A. To allow applications running in the cluster to withstand the loss of a zone.

B. To ensure that the cluster's workloads are isolated from the public Internet.

Question #9

A: Correct.
B: Incorrect.
Feedback: Private clusters ensure that the cluster's workloads are isolated from the
public Internet.

Proprietary + Confidential

Question

Question #10

You have deployed a new Google Kubernetes Engine regional cluster with four machines
in the default pool for the first zone and left the number of zones at the default. How
many Compute Engine machines are deployed and billed against your account?

A. Fifteen. (Four nodes and a single control plane are deployed to each of the three zones. A control plane
node is deployed in each zone and it is billed against your account.)

B. Sixteen. (Four nodes are deployed in primary and secondary zones in two regions, for a total of 4 zones
and 16 nodes. A control plane node is deployed in each zone but it is not billed to your account.)

C. Ten. (Four nodes are deployed in the first zone and three nodes are deployed in two other zones because
you selected the defaults.)

D. Twelve. (Four nodes are deployed in each of three zones. A control plane node is deployed in each zone
but it is not billed against your account.)

Proprietary + Confidential

Answer

Question #10

You have deployed a new Google Kubernetes Engine regional cluster with four machines in
the default pool for the first zone and left the number of zones at the default. How many
Compute Engine machines are deployed and billed against your account?

A. Fifteen. (Four nodes and a single control plane are deployed to each of the three zones. A control plane
node is deployed in each zone and it is billed against your account.)

B. Sixteen. (Four nodes are deployed in primary and secondary zones in two regions, for a total of 4 zones
and 16 nodes. A control plane node is deployed in each zone but it is not billed to your account.)

C. Ten. (Four nodes are deployed in the first zone and three nodes are deployed in two other zones because
you selected the defaults.)

D. Twelve. (Four nodes are deployed in each of three zones. A control plane node is deployed in each zone
but it is not billed against your account.)

A: Incorrect.
Feedback: Review the lesson on GKE Concepts.
B: Incorrect.
Feedback: Review the lesson on GKE Concepts.
C: Incorrect.
Feedback: Review the lesson on GKE Concepts.
D: Correct.
Feedback: GKE Regional clusters are deployed across multiple zones in a single
region. Google also deploys GKE control plane nodes in each zone.

Proprietary + Confidential

Question

In a manifest file for a Pod, in which field do you define a container image for the Pod?

A. apiVersion

B. kind

C. metadata

D. spec

Question #11

Proprietary + Confidential

Answer

In a manifest file for a Pod, in which field do you define a container image for the Pod?

A. apiVersion

B. kind

C. metadata

D. spec

Question #11

A: Incorrect.
Feedback: ApiVersion describes which Kubernetes API version is used to create the
object.
B: Incorrect.
Feedback: Kind tells Kubernetes which object we want.
C: Incorrect.
Feedback: The metadata helps identify an object by supplying it with a name and one
or more labels.
D: Correct.

Proprietary + Confidential

Question

What are Kubernetes namespaces useful for? Choose all that are correct (2 correct
answers).

A. Namespaces allow you to use object names that would otherwise be duplicates
of one another.

B. Namespaces let you implement resource quotas across your cluster.

C. Namespaces make resources more secure.

D. Namespaces partition Linux kernel resources.

Question #12

Proprietary + Confidential

Answer

What are Kubernetes namespaces useful for? Choose all that are correct (2 correct
answers).

A. Namespaces allow you to use object names that would otherwise be duplicates
of one another.

B. Namespaces let you implement resource quotas across your cluster.

C. Namespaces make resources more secure.

D. Namespaces partition Linux kernel resources.

Question #12

A: Correct.
B: Correct.
C: Incorrect.
Feedback: By themselves, using namespaces does not increase security.
D: Incorrect.
Feedback: Linux namespaces are not the same as Kubernetes namespaces.

Proprietary + Confidential

Question

What is the purpose of the Deployment object?

A. To ensure that a defined set of Pods is running at any given time.

B. To launch one or more Pods and ensure that a specified number of them
successfully run to completion and exit.

C. To launch one or more Pods on a time-based schedule.

Question #13

Proprietary + Confidential

Answer

What is the purpose of the Deployment object?

A. To ensure that a defined set of Pods is running at any given time.

B. To launch one or more Pods and ensure that a specified number of them
successfully run to completion and exit.

C. To launch one or more Pods on a time-based schedule.

Question #13

A: Correct.
B: Incorrect.
Feedback: This option describes a Kubernetes Job.
C: Incorrect.
Feedback: This option describes a Kubernetes CronJob.

Proprietary + Confidential

Question

If you are deploying applications in your Pods that need persistent storage, which
controller type should you use?

A. DaemonSet

B. Deployment

C. ReplicaSet

D. StatefulSet

Question #14

Proprietary + Confidential

Answer

If you are deploying applications in your Pods that need persistent storage, which
controller type should you use?

A. DaemonSet

B. Deployment

C. ReplicaSet

D. StatefulSet

Question #14

A: Incorrect.
B: Incorrect.
C: Incorrect.
D: Correct.

Proprietary + Confidential

Question

You need to ensure that the production applications running on your Kubernetes cluster are
not impacted by test and staging deployments. Which features should you implement and
configure to ensure that the resources for your production applications can be prioritized?

A. Configure labels for Test, Staging and Production and configure specific Kubernetes resource
quotas for the Production Namespace.

B. Configure Namespaces for Test, Staging and Production and configure specific Kubernetes
resource quotas for the Production Namespace.

C. Configure Namespaces for Test, Staging and Production and configure specific Kubernetes
resource quotas for the test and staging Namespaces.

D. Configure resource requests for Test, Staging and Production and configure specific
Kubernetes resource quotas for the Production Namespace.

Question #15

Proprietary + Confidential

Answer

You need to ensure that the production applications running on your Kubernetes cluster are
not impacted by test and staging deployments. Which features should you implement and
configure to ensure that the resources for your production applications can be prioritized?

A. Configure labels for Test, Staging and Production and configure specific Kubernetes resource
quotas for the Production Namespace.

B. Configure Namespaces for Test, Staging and Production and configure specific Kubernetes
resource quotas for the Production Namespace.

C. Configure Namespaces for Test, Staging and Production and configure specific Kubernetes
resource quotas for the test and staging Namespaces.

D. Configure resource requests for Test, Staging and Production and configure specific
Kubernetes resource quotas for the Production Namespace.

Question #15

A: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
B: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
C: Correct.
Feedback: Resource quotas are used to limit usage in specific Namespaces, and do
not need to be configured for all Namespaces, only those you need to limit.
D: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.

Proprietary + Confidential

Question

When configuring storage for stateful applications, what steps must you take to provide file
system storage inside your containers for data from your applications that will not be lost or
deleted if your Pods fail or are deleted for any reason?

A. You must create Volumes using local Storage on the Nodes and mount the Volumes inside
your containers to provide durable storage.

B. You must create Volumes using network based storage to provide durable storage
remote to the Pods and specify these in the Pods.

C. You must export the data from your applications to a remote service that preserves
your data.

D. You must mount NFS Volumes on each container in the Pod that requires durable storage.

Question #16

Proprietary + Confidential

Answer

When configuring storage for stateful applications, what steps must you take to provide file
system storage inside your containers for data from your applications that will not be lost or
deleted if your Pods fail or are deleted for any reason?

A. You must create Volumes using local Storage on the Nodes and mount the Volumes inside
your containers to provide durable storage.

B. You must create Volumes using network based storage to provide durable storage
remote to the Pods and specify these in the Pods.

C. You must export the data from your applications to a remote service that preserves
your data.

D. You must mount NFS Volumes on each container in the Pod that requires durable storage.

Question #16

A: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
B: Correct.
C: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
D: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.

Proprietary + Confidential

Question

You want to deploy multiple copies of your application, so that you can load balance traffic
across them. How should you deploy this application's Pods to the production Namespace in
your cluster?

A. Create a Deployment manifest that specifies the number of replicas that you want to run.

B. Create a Service manifest for the LoadBalancer that specifies the number of replicas you
want to run.

C. Create separate named Pod manifests for each instance of the application and deploy as
many as you need.

D. Deploy the Pod manifest multiple times until you have achieved the number of replicas
required.

Question #17

Proprietary + Confidential

Answer

You want to deploy multiple copies of your application, so that you can load balance traffic
across them. How should you deploy this application's Pods to the production Namespace in
your cluster?

A. Create a Deployment manifest that specifies the number of replicas that you want to run.

B. Create a Service manifest for the LoadBalancer that specifies the number of replicas you
want to run.

C. Create separate named Pod manifests for each instance of the application and deploy as
many as you need.

D. Deploy the Pod manifest multiple times until you have achieved the number of replicas
required.

Question #17

A: Correct.
B: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
C: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.
D: Incorrect.
Feedback: Review the lesson on Kubernetes Object Management.

Proprietary + Confidential

Agenda

Kubernetes Concepts

Kubernetes Components

Google Kubernetes Engine Concepts

Object Management

Lab: Deploying Google Kubernetes
Engine

Migrate for Anthos

Quiz

Summary

Proprietary + Confidential

Summary
Kubernetes controllers keep the cluster state matching the desired state.

Kubernetes consists of a family of control plane components, running on the control
plane and the nodes.

GKE abstracts away the control plane.

Declare the state you want using manifest files.

This concludes the Kubernetes Architecture module.

In this module, you learned about the Kubernetes operating philosophy. Every item
under Kubernetes’s control is represented by an object, and Kubernetes tries to keep
the state of its cluster matching the state you have declared that you want.

You learned about the control plane components that make up Kubernetes. You
learned about kube-apiserver, which is the point of control for your Kubernetes
cluster. And you learned about kubelet, which is your cluster’s agent on each node.

And you also learned that a GKE-managed cluster implements the control plane for
you, behind the scenes, and that you are not charged separately for it.

To tell Kubernetes what you want the state of your cluster to be, create manifest files.
Typically, you’ll build these files in YAML format. These files name and describe the
objects you want Kubernetes to keep alive and healthy. They also document the
desired state of your cluster, so you should keep these files in a source control
system.

Proprietary + Confidential

