
Proprietary + Confidential

Introduction to
Containers and
Kubernetes

Welcome to the ‘Introduction to Containers and Kubernetes’ module. In this module
you will learn what Containers are, what their benefits are for application deployment,
how containers are configured and built, what functions container management
solutions like Kubernetes provide, and what the advantages of Google Kubernetes
Engine are compared to building your own Container Management infrastructure.

Proprietary + Confidential

Learn how to ...

Create a container using Cloud
Build.

Store a container in Container
Registry.

Compare and contrast Kubernetes
and Google Kubernetes Engine
(GKE) features.

In this module, you’ll learn how to create a container using Cloud Build, store a
container in Container Registry, and compare and contrast Kubernetes and Google
Kubernetes Engine features.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Let’s start by introducing Containers. In this lesson you’ll learn about the key features
of containers and the advantages of using containers for application deployment
compared to alternatives such as deploying apps directly to virtual machines. You’ll
learn about Google’s Cloud Build, and see how to use it to build and manage your
application images.

Proprietary + Confidential

Dedicated server

Kernel

Dependencies

Application code

Hardware

Deployment ~months
Low utilization
Not portable

Virtual machine

Kernel

Dependencies

Application code

Hardware +
Hypervisor

Deployment ~days (mins)
Improved utilization
Hypervisor-specific

Hypervisors create and manage virtual machines

Not very long ago, the default way to deploy an application was on its own physical
computer. To set one up, you’d find physical space, power, cooling, and network
connectivity for it, and then install an operating system, any software dependencies,
and finally the application. If you need more processing power, redundancy, security,
or scalability, add more computers. It was very common for each computer to have a
single purpose: for example, database, web server, or content delivery.

This practice wasted resources and took a lot of time to deploy, maintain, and scale. It
also wasn’t very portable: applications were built for a specific operating system and
sometimes for specific hardware.

Virtualization helped by making it possible to run multiple virtual servers and operating
systems on the same physical computer. A hypervisor is the software layer that
breaks the dependencies of an operating system on the underlying hardware and
allows several virtual machines to share that hardware. KVM is one well-known
hypervisor. Today, you can use virtualization to deploy new servers fairly quickly.

Adopting virtualization means that it takes us less time to deploy new solutions. We
waste less of the resources of the physical computers we use. And we get some
improved portability, because virtual machines can be imaged and moved around.
However, the application, all its dependencies, and operating system are still bundled
together. It’s not easy to move a VM from one hypervisor product to another, and
every time you start a VM, its operating system takes time to boot up.

Proprietary + Confidential

Dedicated server

Kernel

Dependencies

Application code

Hardware

Deployment ~months
Low utilization
Not portable

Virtual machine

Kernel

App 2

Hardware +
Hypervisor

Deployment ~days (mins)
Hypervisor-specific

Low isolation; tied to OS

App 1

Dependencies

Running multiple apps on a single VM

Running multiple applications within a single VM creates another problem:
applications that share dependencies are not isolated from each other. The resource
requirements of one application can starve other applications of the resources they
need. Also, a dependency upgrade for one application might cause another to stop
working.

You can try to solve this problem with rigorous software engineering policies. For
example, you can lock down the dependencies so that no application is allowed to
make changes; but this leads to new problems because dependencies need to be
upgraded occasionally.

You can add integration tests to ensure that applications work. Integration tests are
great. But dependency problems can cause novel failure modes that are hard to
troubleshoot. And it really slows down development if you have to rely on integration
tests to confirm the basic integrity of your application environment.

Proprietary + Confidential

Virtual machine

Kernel

Dependencies

Hardware + hypervisor

Dedicated server

Kernel

Dependencies

Application code

Hardware

Deployment ~months
Not portable

Low utilization

Deployment ~days (mins)
Hypervisor-specific

Low isolation; tied to OS

Virtual machine

Kernel

Dependencies

Application code

Deployment ~days (mins)
Hypervisor-specific

Redundant OS

Application code

The VM-centric way to solve this problem

The VM-centric way to solve this problem is to run a dedicated virtual machine for
each application.

Each application maintains its own dependencies, and the kernel is isolated so one
application won't affect the performance of another. The result is that two complete
copies of the kernel are running.

Scale this to hundreds or thousands of applications and you see its limitations;
imagine trying to do a kernel update. So, for large systems, dedicated VMs are
redundant and wasteful. VMs are also relatively slow to start up, because an entire
operating system has to boot.

Proprietary + Confidential

Virtual machine

Kernel

Hardware + hypervisor

Dedicated server

Kernel

Dependencies

Application code

Hardware

Deployment ~months
Not portable

Low utilization

Deployment ~days (mins)
Hypervisor-specific

Low isolation; tied to OS

Deployment ~days (mins)
Hypervisor-specific

Redundant OS

Container Runtime

Dependencies

Application

User Space
Dependencies

Application

User Space
Application Application

User space abstraction and containers

A more efficient way to resolve the dependency problem is to implement abstraction
at the level of the application and its dependencies. You don’t have to virtualize the
entire machine, or even the entire operating system, but just the user space. The user
space is all of the code that resides above the kernel, and it includes applications and
their dependencies.

This is what it means to create containers. Containers are isolated user spaces for
running application code.

Containers are lightweight because they don’t carry a full operating system. They can
be scheduled or integrated tightly with the underlying system, which is very efficient.
And they can be created and shut down very quickly, because you’re just starting and
stopping operating system processes, and not booting an entire VM and initializing an
operating system for each application.

Developers appreciate this level of abstraction because they don’t want to worry
about the rest of the system. Containerization is the next step in the evolution of
managing code.

Proprietary + Confidential

Container

Dependencies

Application code

Containers are lightweight, standalone,
resource-efficient, portable, executable packages

You now understand containers as delivery vehicles for application code. They’re
lightweight, standalone, resource-efficient, portable, executable packages.

You develop application code in the usual way: on desktops, laptops, and servers.
The container allows you to execute your final code on VMs without worrying about
software dependencies like application runtimes, system tools, system libraries, and
settings. You packaged your code with all the dependencies it needs, and the engine
that executes your container is responsible for making them available at runtime.

Proprietary + Confidential

Container

Dependencies

Application code

Hardware

Container

Dependencies

Application code

Kernel

Container runtime

Why developers like containers

Containers appeal to developers because they’re an application-centric way to deliver
high-performing, scalable applications.

Containers also allow developers to safely make assumptions about the underlying
hardware and software.

With a Linux kernel underneath, you no longer have code that works on your laptop
but doesn't work in production; the container is the same and runs anywhere. If you
make incremental changes to a container based on a production image, you can
deploy it very quickly with a single file copy. This speeds development.

Finally, containers make it easier to build applications that use the microservices
design pattern: that is, loosely coupled, fine-grained components. This modular
design pattern allows the operating system to scale and upgrade components of an
application without affecting the application as a whole.

An application and its dependencies are called an image. A container is simply a
running instance of an image. By building software into container images, developers
can easily package and ship an application without worrying about the system it will
be running on.

You need software to build container images and to run them. Docker is one tool that
does both. Docker is an open-source technology that allows you to create and run
applications in containers, but it doesn’t offer a way to orchestrate those applications

at scale as Kubernetes does. In this course, we will use Google’s Cloud Build to
create Docker-formatted container images.

Proprietary + Confidential

Processes

Union
file systems

Linux
namespaces

cgroups

Containers use a varied set of Linux technologies

Containers are not an intrinsic, primitive feature of Linux. Instead, their power to
isolate workloads is derived from the composition of several technologies.

One foundation is the Linux process. Each Linux process has its own virtual memory
address space, separate from all others, and Linux processes are rapidly created and
destroyed.

Containers use Linux namespaces to control what an application can see: process ID
numbers, directory trees, IP addresses, and more. By the way, Linux namespaces are
not the same thing as Kubernetes namespaces, which you will learn about later in this
course.

Containers use Linux cgroups to control what an application can use: its maximum
consumption of CPU time, memory, I/O bandwidth, and other resources.

Finally, containers use union file systems to efficiently encapsulate applications and
their dependencies into a set of clean, minimal layers. Now let’s see how this works.

Proprietary + Confidential

FROM ubuntu:18.04

COPY . /app

RUN make /app

CMD python /app/app.py

Dockerfile

Container
layer

Thin R/W layer

Base
Image
Layers
(R/O)

ubuntu:18.04

c22013c84729

d74508fb6632

91e54dfb1179

d3a1f33e8a5a

194.5 KB

1.895 KB

0 B

188.1 MB

Containers are structured in layers

A container image is structured in layers. The tool you use to build the image reads
instructions from a file called the “container manifest.” In the case of Docker-formatted
container images, that’s called a Dockerfile. Each instruction in the Dockerfile
specifies a layer inside the container image. Each layer is read-only. (When a
container runs from this image, it will also have a writable, ephemeral topmost layer.)

Let’s look at a simple Dockerfile. This Dockerfile will contain four commands, each of
which creates a layer. (At the end of this discussion, I’ll explain why this Dockerfile is
a little oversimplified for modern use.)

● The FROM statement starts out by creating a base layer, pulled from a public
repository. This one happens to be the Ubuntu Linux runtime environment of a
specific version.

● The COPY command adds a new layer, containing some files copied in from
your build tool’s current directory.

● The RUN command builds your application using the “make” command and
puts the results of the build into a third layer.

And finally, the last layer specifies what command to run within the container when it
is launched. Each layer is only a set of differences from the layer before it. When you
write a Dockerfile, you should organize from the layers least likely to change, through
to the layers most likely to change.

By the way, I promised that I would explain how this Dockerfile example is

oversimplified. These days, the best practice is not to build your application in the very
same container that you ship and run. After all, your build tools are at best just clutter
in a deployed container, and at worst they are an additional attack surface. Today,
application packaging relies on a multi-stage build process, in which one container
builds the final executable image, and a separate container receives only what is
needed to run the application. Fortunately for us, the tools we use support this
practice.

When you launch a new container from an image, the container runtime adds a new
writable layer on top of the underlying layers. This layer is often called the container
layer.

All changes made to the running container, such as writing new files, modifying
existing files, and deleting files, are written to this thin writable container layer. And
they’re ephemeral: When the container is deleted, the contents of this writable layer
are lost forever. The underlying container image remains unchanged. This fact about
containers has an implication for your application design: whenever you want to store
data permanently, you must do so somewhere other than a running container image.

Proprietary + Confidential

thin R/W layer

container container container...

thin R/W layer thin R/W layer

ubuntu:18.04

c22013c84729

d74508fb6632

91e54dfb1179

d3a1f33e8a5a

194.5 KB

1.895 KB

0 B

188.1 MB

Containers promote smaller shared images

Because each container has its own writable container layer, and all changes are
stored in this layer, multiple containers can share access to the same underlying
image and yet have their own data state. The diagram shows multiple containers
sharing the same Ubuntu image.

Because each layer is only a set of differences from the layer before it, you get
smaller images.

For example, your base application image may be 200 MB, but the difference to the
next point release might only be 200 KB. When you build a container, instead of
copying the whole image, it creates a layer with just the difference. When you run a
container, the container runtime pulls down the layers it needs. When you update, you
only need to copy the difference. This is much faster than running a new virtual
machine.

Proprietary + Confidential

Build your own container using Cloud Build.

Store and download container images from Artifact Registry

Build your own container using the open-source docker command.docker

How can you get or create containers?

It’s very common to use publicly available open-source container images as the base
for your own images, or for unmodified use. For example, you’ve already seen the
“ubuntu” container image, which provides a Ubuntu Linux environment inside a
container. “Alpine” is a popular Linux environment in a container, noted for being very
small. The nginx web server is frequently used in its container packaging.

Artifact Registry is the single place to store container images as well as language and
OS packages. You can use Artifact Registry with other Google Cloud services namely
IAM for access control, KMS for customer managed encryption keys, Cloud Build for
CI/CD and scan for container vulnerabilities with Container Analysis.

You can also find container images in other public repositories: Docker Hub Registry,
GitLab, and others.

The open-source docker command is a popular way to build your own container
images. It’s widely known and widely available.

One downside of building containers with the docker command is that you must trust
the computer that you do your builds on.

Google provides a managed service for building containers that’s integrated with IAM.
This service is called Cloud Build, and we’ll use it in this course.

Proprietary + Confidential

Retrieve the source code for your builds from a
variety of storage locations

Cloud Source
Repositories

Cloud BuildDevelopers GKE

App Engine

Cloud Functions

git repository

GitHub

Artifact Registry

Cloud Build can retrieve the source code for your builds from many code repositories,
including Cloud Source Repositories, or git-compatible repositories like GitHub and
Bitbucket.

To generate a build with Cloud Build, you define a series of steps. For example, you
can configure build steps to fetch dependencies, compile source code, run integration
tests, or use tools such as Docker, Gradle, and Maven. Each build step in Cloud Build
runs in a Docker container.

Then Cloud Build can deliver your newly built images to various execution
environments: not only GKE, but also App Engine and Cloud Functions.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Proprietary + Confidential

Lab Intro
Working with Cloud Build

In this lab, you’ll build a Docker container image from provided code and a Dockerfile
using Cloud Build. You’ll then upload the container to Container Registry. The tasks
that you will perform include using Cloud Build to build and push containers and using
Container Registry to store and deploy containers.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Now let’s introduce a popular container management and orchestration solution called
Kubernetes.

Proprietary + Confidential

Kubernetes!

You’ve embraced containers, but managing them at scale is a challenge

What can you do to better manage your container infrastructure?

Managing your container infrastructure

Your organization has really embraced the idea of containers. Because containers are
so lean, your coworkers are creating them in numbers far exceeding the counts of
virtual machines you used to have. And the applications running in them need to
communicate over the network, but you don’t have a network fabric that lets
containers find each other. You need help.

How can you manage your container infrastructure better?

Kubernetes is an open-source platform that helps you orchestrate and manage your
container infrastructure on-premises or in the cloud.

Proprietary + Confidential

Open source

Container
management

Automation

Declarative
configuration

Imperative
configuration

What is Kubernetes?

So what is Kubernetes? It’s a container-centric management environment. Google
originated it and donated it to the open-source community. Now it’s a project of the
vendor-neutral Cloud Native Computing Foundation.

It automates the deployment, scaling, load balancing, logging, monitoring, and other
management features of containerized applications. These are the features that are
characteristic of typical platform-as-a-service solutions.

Kubernetes also facilitates the features of infrastructure-as-a-service, such as
allowing a wide range of user preferences and configuration flexibility.

Kubernetes supports declarative configurations. When you administer your
infrastructure declaratively, you describe the desired state you want to achieve,
instead of issuing a series of commands to achieve that desired state. Kubernetes’s
job is to make the deployed system conform to your desired state and to keep it there
in spite of failures. Declarative configuration saves you work. Because the system’s
desired state is always documented, it also reduces the risk of error.

Kubernetes also allows imperative configuration, in which you issue commands to
change the system’s state. But administering Kubernetes at scale imperatively would
be a big missed opportunity. One of the primary strengths of Kubernetes is its ability

to automatically keep a system in a state you declare. Experienced Kubernetes
administrators use imperative configuration only for quick temporary fixes and as a
tool in building a declarative configuration.

Proprietary + Confidential

Kubernetes features
● Supports both stateful and stateless applications

● Autoscaling

● Resource limits

● Extensibility

● Portability

Now that you know what Kubernetes is, let’s talk about some of its features.

Kubernetes supports different workload types. It supports stateless applications, such
as Nginx or Apache web servers, and stateful applications where user and session
data can be stored persistently. It also supports batch jobs and daemon tasks.

Kubernetes can automatically scale in and out containerized applications based on
resource utilization.

You can specify resource request levels and resource limits for your workloads, and
Kubernetes will obey them. These resource controls let Kubernetes improve overall
workload performance within a cluster.

Developers extend Kubernetes through a rich ecosystem of plugins and addons. For
example, there is a lot of creativity going on currently with Kubernetes Custom
Resource Definitions, which bring the Kubernetes declarative management model to
an amazing variety of other things that need to be managed. The primary focus of this
course, though, is getting started with Kubernetes, because it’s provided as a service
by Google Cloud, so extending Kubernetes is not in our scope.

Because it’s open-source, Kubernetes also supports workload portability across

on-premises or multiple cloud service providers such as Google Cloud and others.
This allows Kubernetes to be deployed anywhere. You can move Kubernetes
workloads freely without vendor lock-in.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Google Cloud’s managed services offering for Kubernetes is called Google
Kubernetes Engine, or GKE. Why do people choose it?

Proprietary + Confidential

Yes! Google Kubernetes Engine

Kubernetes is powerful, but managing the infrastructure is a full-time job

Is there a managed service for Kubernetes within Google Cloud?

Managing Kubernetes within Google Cloud

What if you have begun using Kubernetes in your environment, but the infrastructure
has become a burden to maintain?

Is there anything within Google Cloud that can help you?

Absolutely yes. Google Cloud offers a managed Kubernetes solution called Google
Kubernetes Engine.

Proprietary + Confidential

GKE lets you deploy workloads easily

Compute
Engine

App
Engine

Cloud
Functions

Toward managed infrastructure Toward dynamic infrastructure

IaaS PaaS Serverless
logic

Automated
elastic

resources

Managed
services

Google
Kubernetes

Engine
Hybrid

Google Kubernetes Engine is a managed Kubernetes service on Google
infrastructure. GKE helps you to deploy, manage, and scale Kubernetes environments
for your containerized applications on Google Cloud.

More specifically, GKE is a component of the Google Cloud compute offerings. It
makes it easy to bring your Kubernetes workloads into the cloud.

Proprietary + Confidential

Auto repair Auto upgrade Cluster scaling

Identity and access
management

Integrated logging and
monitoring Integrated networking

Fully managed Container-
optimized OS Autopilot

Google Cloud console

GKE has many features

Seamless integration

GKE is fully managed, which means you don’t have to provision the underlying
resources.

GKE uses a container-optimized operating system to run your workloads. These
operating systems are maintained by Google and are optimized to scale quickly with a
minimal resource footprint. The container-optimized OS is discussed later in this
course.

GKE Autopilot is a mode of operation in GKE in which Google manages your cluster
configuration, including your nodes, scaling, security, and other preconfigured settings

The virtual machines that host your containers in a GKE cluster are called nodes. If
you enable GKE’s auto-repair feature, the service will repair unhealthy nodes for you.
It’ll make periodic health checks on each node of the cluster. If a node is determined
to be unhealthy and require repair, GKE will drain the node (in other words, cause its
workloads to gracefully exit) and recreate the node.

When you use GKE, you start by directing the service to instantiate a Kubernetes
system for you. This system is called a cluster. GKE’s auto-upgrade feature can be
enabled to ensure that your clusters are always automatically upgraded with the latest
stable version of Kubernetes.

Just as Kubernetes supports scaling workloads, GKE supports scaling the cluster
itself.

GKE also integrates with Google’s Identity and Access Management, which allows
you to control access through the use of accounts and role permissions.

Google Cloud’s operations suite is a system for monitoring and managing services,
containers, applications, and infrastructure. GKE integrates with Cloud Monitoring to
help you understand your applications’ performance.

GKE is integrated with Google Virtual Private Clouds and makes use of Google
Cloud’s networking features.

GKE seamlessly integrates with Google’s Cloud Build and Container Registry. This
allows you to automate deployment using private container images that you have
securely stored in Artifact Registry.

And finally the Google Cloud console provides insights into GKE clusters and their
resources and allows you to view, inspect and delete resources in those clusters. You
might be aware that open-source Kubernetes contains a dashboard, but it takes a lot
of work to set it up securely. But the Google Cloud console is a dashboard for your
GKE clusters and workloads that you don’t have to manage, and it’s more powerful
than the Kubernetes dashboard.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

In this last lesson, you’ll learn about the available computing options. In a previous
module, I briefly introduced your choices for running compute workloads in Google
Cloud. Now that we know more about how containers work, we can compare these
choices in more detail.

Proprietary + Confidential

Comparing Google Cloud computing solutions

Compute
Engine

App
EngineGKE

IaaS Hybrid PaaS Serverless
logic

Cloud
Functions

Container Deployments

Cloud
Run

Stateless

The services are Compute Engine, GKE, App Engine, Cloud Run, and Cloud
Functions. At the end of this lesson, you will understand why people choose each.

Proprietary + Confidential

Compute Engine
● Fully customizable virtual machines.

● Persistent disks and optional local SSDs.

● Global load balancing and autoscaling.

● Per-second billing.

Compute Engine offers virtual machines running on Google Cloud. You can select
predefined VM configurations. At the time this course was developed, these virtual
machines could be as large as 224 vCPUs and more than 12 terabytes of memory.
You can also create customized configurations to precisely match your performance
and cost requirements.

Virtual machines need block storage. Compute Engine offers you two main choices:
Persistent disks and local SSDs. Persistent disks offer network storage that can scale
up to 257 TB, and you can easily take snapshots of these disks for backup and
mobility. You can also choose local SSDs, which enable very high input/output
operations per second.

You can place your Compute Engine workloads behind global load balancers that
support autoscaling. Compute Engine offers a feature called managed instance
groups; with these, you can define resources that are automatically deployed to meet
demand.

Google Cloud enables fine-grained control of costs of Compute Engine resources by
providing per-second billing. This granularity helps reduce your costs when deploying
compute resources for short periods of time, such as batch processing jobs. Compute
Engine offers preemptible virtual machines, which provide significantly cheaper

pricing for your workloads that can be interrupted safely.

https://cloud.google.com/compute/docs/machine-types

https://cloud.google.com/compute/docs/machine-types

Proprietary + Confidential

Compute Engine use cases
● Complete control over the OS and virtual

hardware.

● Well suited for lift-and-shift migrations to
the cloud.

● Most flexible compute solution, often used
when a managed solution is too restrictive.

So why do people choose Compute Engine?

With Compute Engine, you have complete control over your infrastructure. You can
customize operating systems, and even run applications that rely on a mix of
operating systems.

You can easily lift and shift your on-premises workloads into Google Cloud without
rewriting your applications or making any changes.

Compute Engine is the best option when other computing options don’t support your
application or requirements.

Proprietary + Confidential

App Engine
● Provides a fully managed, code-first platform.

● Streamlines application deployment and
scalability.

● Provides support for popular programming
languages and application runtimes.

● Supports integrated monitoring, logging, and
diagnostics.

● Simplifies version control, canary testing, and
rollbacks.

App Engine has a completely different orientation from Compute Engine. App Engine
is a fully managed application platform. Using App Engine means zero server
management and zero configuration deployments.

So if you’re a developer, you can focus on building applications and not worry about
the deployment part.

If you’re a developer, you can simply upload your code, and App Engine will deploy
the required infrastructure. App Engine supports popular languages like Java,
Node.js., Python, PHP, C#, .NET, Ruby, and Go. You can also run container
workloads.

Cloud Monitoring, Cloud Logging, and diagnostics such as Cloud Profiler and Error
Reporting are also tightly integrated with App Engine. Google Cloud’s operation suite
integrates with tools such as the Cloud SDK, Cloud Source Repositories, IntelliJ,
Visual Studio, and Powershell.

App Engine also supports version control and traffic splitting.

Proprietary + Confidential

App Engine use cases
● Websites

● Mobile app and gaming backends

● RESTful APIs

App Engine is a good choice if you simply need to focus on writing code and do not
need or want to worry about building a highly reliable and scalable infrastructure. You
can focus on building applications instead of deploying and managing the
environment.

Use cases of App Engine include web sites, mobile app and gaming backends, and
as a way to present a RESTful API to the internet. What’s a RESTful API? In short, it’s
an application program interface that resembles the way a web browser interacts with
a web server. RESTful APIs are easy for developers to work with and extend, and
App Engine makes them easy to operate.

Proprietary + Confidential

Google Kubernetes Engine
● Fully managed Kubernetes platform.

● Supports cluster scaling, persistent disks,
automated upgrades, and auto node repairs.

● Built-in integration with Google Cloud services.

● Portability across multiple environments

○ Hybrid computing
○ Multi-cloud computing

Next, the main topic of this course: Google Kubernetes Engine. We learned that
Kubernetes is an orchestration system for applications in containers. It automates
deployment, scaling, load balancing, logging and monitoring, and other management
features. Google Kubernetes Engine extends Kubernetes management on Google
Cloud by adding features and integrating with other Google Cloud services
automatically.

GKE supports cluster scaling, persistent disks, automated upgrades with the latest
version of Kubernetes, and auto repair for unhealthy nodes.

It has built-in integration with Cloud Build, Container Registry, Cloud Monitoring, and
Cloud Logging.

Existing workloads running within on-premises clusters can be easily moved onto
Google Cloud. There’s also no vendor lock-in.

Proprietary + Confidential

GKE use cases
● Containerized applications.

● Cloud-native distributed systems.

● Hybrid applications.

Overall, GKE is very well-suited for containerized applications, cloud-native
distributed systems, and hybrid applications.

Kubernetes and GKE are discussed in-depth throughout this course.

Proprietary + Confidential

Cloud Run
● Enables stateless containers.

● Abstracts away infrastructure management.

● Automatically scales up and down.

● Open API and runtime environment.

Cloud Run is a managed compute platform that enables you to run stateless
containers via web requests or Pub/Sub events. Cloud Run is serverless: it abstracts
away all infrastructure management so you can focus on developing applications. It is
built on Knative, an open-source, Kubernetes-based platform. It builds, deploys, and
manages modern serverless workloads. Cloud Run gives you the choice of running
your containers either fully-managed or in your own GKE cluster.

Cloud Run automatically scales up and down from zero depending on traffic almost
instantaneously, so you never have to worry about scale configuration. Cloud Run
also charges you only for the resources you use (calculated down to the nearest 100
milliseconds), so you will never have to pay for your over-provisioned resources.

With Cloud Run you can deploy your stateless containers with a consistent developer
experience to a fully managed environment or to your own GKE cluster. This common
experience is enabled by Knative, an open API and runtime environment built on
Kubernetes that gives you freedom to move your workloads across different
environments and platforms: fully managed on Google Cloud, on GKE, or anywhere
Knative runs.

Proprietary + Confidential

Cloud Run use cases
● Deploy stateless containers that listen for

requests or events.

● Build applications in any language using
any frameworks and tools.

Cloud Run enables you to deploy stateless containers that listen for requests or
events delivered via HTTP. With Cloud Run, you can build your applications in any
language using whatever frameworks and tools you want and deploy them in seconds
without having to manage the server infrastructure.

Proprietary + Confidential

Cloud Functions
● Event-driven, serverless compute service.

● Automatic scaling with highly available and
fault-tolerant design.

● Charges apply only when your code runs.

● Triggered based on events in Google Cloud
services, HTTP endpoints, and Firebase.

Cloud Functions is an event-driven, serverless compute service for simple,
single-purpose functions that are attached to events. In Cloud Functions, you simply
upload your code written in JavaScript, Python, or Go; Google Cloud will
automatically deploy appropriate computing capacity to run that code.

These servers are automatically scaled and are deployed with a highly available and
fault-tolerant design.

You’re only charged for the time your code runs. For each function, invocation
memory and CPU use is measured in 100 millisecond increments, rounded up to the
nearest increment. Cloud Functions also provides a perpetual free tier, so many
Cloud Function use cases can be free of charge.

With Cloud Functions, your code is triggered within a few milliseconds based on
events: for example, a file being uploaded to Google Cloud Storage, or a message
being received with Pub/Sub. Cloud Functions can also be triggered based on HTTP
endpoints you define and events in the Firebase mobile-application backend.

Proprietary + Confidential

Cloud Functions use cases
● Supporting microservice architecture.

● Serverless application backends.

○ Mobile and IoT backends.
○ Integrate with third-party services and APIs.

● Intelligent applications.

○ Virtual assistant and chat bots.
○ Video and image analysis.

Cloud Functions can be used as part of a microservices application architecture.

You can also build simple, serverless mobile or IoT backends or integrate with
third-party services and APIs. Files uploaded to your Cloud Storage bucket can be
processed in real time. Similarly, the data can be extracted, transformed, and loaded
for querying and analysis.

Google Cloud customers often use Cloud Functions as part of intelligent applications
such as virtual assistants, video or image analysis, and sentiment analysis.

Proprietary + Confidential

Which compute service should you adopt?

Compute
Engine

App
EngineGKE Cloud

Functions

Physical servers

One container per
VM

Long-lived VMs

No-ops No-ops

Rich administration
of container
workloads

Containers run by
the service

On-premises
Kubernetes

Cloud Run

Managed

Stateless
Container

So which compute service should you adopt? A lot depends on where you’re coming
from.
If you’re running applications on physical server hardware, it will be the path of least
resistance to move into Compute Engine.

What if you’re running applications in long-lived virtual machines, in which each VM is
managed and maintained? In this case, you’ll also find moving into Compute Engine
is the quickest Google Cloud service for getting your applications into the cloud.

What if you don’t want to think about operations at all? App Engine and Cloud
Functions are good choices. You can learn more about the differences between App
Engine and Cloud Functions in the courses under “Developing Applications with
Google Cloud.”

I hope that this course so far has helped you understand why software containers are
so beneficial. Containerization is the most efficient and portable way to package an
application. The popularity of containerization is growing very quickly. In fact, both
Compute Engine and App Engine can launch containers for you. Compute Engine will
accept a container image from you and launch a virtual machine instance containing
it; you can use Compute Engine technologies to scale and manage the resulting VM.
And App Engine Flexible Environment will accept a container image from you and run

it in the same no-ops environment that App Engine delivers for code.

But what if you want more control over your containerized workloads than App Engine
offers, and denser packing than Compute Engine offers? That increasingly popular
use case is what GKE is designed to address. The Kubernetes paradigm of container
orchestration is incredibly powerful and vendor-neutral, and a broad and vibrant
community has developed around it. Using Kubernetes as a managed service from
Google Cloud saves you work and lets you benefit from all the other Google Cloud
resources too. You can also choose Cloud Run to run stateless containers on a
managed compute platform.

And of course, if you’re already running Kubernetes in your on-premises data centers,
moving to GKE is a great choice, because you’ll be able to bring along both your
workloads and your management approach.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Proprietary + Confidential

Question

Question #1

Which of these problems are containers intended to solve? Mark all that are correct
(3 correct answers).

A. Applications need a way to isolate their dependencies from one another.

B. It's difficult to troubleshoot applications when they work on a developer's laptop
but fail in production.

C. Packaging applications in virtual machines can be wasteful.

D. Large monolithic applications that need to be run in the cloud.

Proprietary + Confidential

Answer

Question #1

Which of these problems are containers intended to solve? Mark all that are correct
(3 correct answers).

A. Applications need a way to isolate their dependencies from one another.

B. It's difficult to troubleshoot applications when they work on a developer's laptop
but fail in production.

C. Packaging applications in virtual machines can be wasteful.

D. Large monolithic applications that need to be run in the cloud.

A: Correct.
B: Correct.
C: Correct.
D: Incorrect.
Feedback: Monolithic applications can be run in the cloud but Compute Engine is
a better option for these.

Proprietary + Confidential

Question

You are choosing a technology for deploying applications, and you want to deliver them
in lightweight, standalone, resource-efficient, portable packages. Which choice best
meets those goals?

A. Containers

B. Executable files

C. Hypervisors

D. Virtual Machines

Question #2

Proprietary + Confidential

Answer

You are choosing a technology for deploying applications, and you want to deliver them
in lightweight, standalone, resource-efficient, portable packages. Which choice best
meets those goals?

A. Containers

B. Executable files

C. Hypervisors

D. Virtual Machines

Question #2

A: Correct.
B: Incorrect.
Feedback: Review the Introduction to Containers lesson.
C: Incorrect.
Feedback: Review the Introduction to Containers lesson.
D: Incorrect.
Feedback: Review the Introduction to Containers lesson.

Proprietary + Confidential

Question

Why do Linux containers use union file systems?

A. To control an application's maximum consumption of CPU time and memory.

B. To control an application's ability to see parts of the directory tree and IP addresses.

C. To efficiently encapsulate applications and their dependencies into a set of clean,
minimal layers.

D. To give a container its own virtual memory address space.

Question #3

Proprietary + Confidential

Answer

Why do Linux containers use union file systems?

A. To control an application's maximum consumption of CPU time and memory.

B. To control an application's ability to see parts of the directory tree and IP addresses.

C. To efficiently encapsulate applications and their dependencies into a set of clean,
minimal layers.

D. To give a container its own virtual memory address space.

Question #3

A: Incorrect.
Feedback: Linux cgroups provide this benefit.
B: Incorrect.
Feedback: Linux namespaces provide this benefit.
C: Correct.
D: Incorrect.
Feedback: Linux processes provide this benefit.

Proprietary + Confidential

Question

Question #4

What is significant about the topmost layer in a container? Choose all that are true
(2 correct answers).

A. An application running in a container can only modify the topmost layer.

B. Reading from or writing to the topmost layer requires special privileges.

C. Reading from or writing to the topmost layer requires special software libraries.

D. The topmost layer contents are ephemeral. When the container is deleted the
contents will be lost.

Proprietary + Confidential

Answer

Question #4

What is significant about the topmost layer in a container? Choose all that are true
(2 correct answers).

A. An application running in a container can only modify the topmost layer.

B. Reading from or writing to the topmost layer requires special privileges.

C. Reading from or writing to the topmost layer requires special software libraries.

D. The topmost layer contents are ephemeral. When the container is deleted the
contents will be lost.

A: Correct.
B: Incorrect.
C: Incorrect.
D: Correct.

Proprietary + Confidential

Question

When you use Kubernetes, you describe the desired state you want, and Kubernetes's
job is to make the deployed system conform to your desired state and to keep it there in
spite of failures. What is the name for this management approach?

A. Containerization

B. Declarative configuration

C. Imperative configuration

D. Virtualization

Question #5

Proprietary + Confidential

Answer

When you use Kubernetes, you describe the desired state you want, and Kubernetes's
job is to make the deployed system conform to your desired state and to keep it there in
spite of failures. What is the name for this management approach?

A. Containerization

B. Declarative configuration

C. Imperative configuration

D. Virtualization

Question #5

A: Incorrect.
B: Correct.
C: Incorrect.
D: Incorrect.

Proprietary + Confidential

Question

Question #6

What is a stateful application?

A. An application that is not containerized.

B. An application that requires user and session data to be stored persistently.

C. A web front end.

Proprietary + Confidential

Answer

Question #6

What is a stateful application?

A. An application that is not containerized.

B. An application that requires user and session data to be stored persistently.

C. A web front end.

A: Incorrect.
B: Correct.
C: Incorrect.

Proprietary + Confidential

Question

You are classifying a number of your applications into workload types. Select the stateful
applications in this list of applications. Choose all responses that are correct (2 correct
responses).

A. A gaming application that keeps track of user state persistently.

B. A shopping application that saves user shopping cart data between sessions.

C. Image recognition application that identifies product defects from images.

D. Web server front end for your inventory system.

Question #7

Proprietary + Confidential

Answer

You are classifying a number of your applications into workload types. Select the stateful
applications in this list of applications. Choose all responses that are correct (2 correct
responses).

A. A gaming application that keeps track of user state persistently.

B. A shopping application that saves user shopping cart data between sessions.

C. Image recognition application that identifies product defects from images.

D. Web server front end for your inventory system.

Question #7

A: Correct.
B: Correct.
C: Incorrect.
Feedback: Review the Introduction to Kubernetes lesson.
D: Incorrect.
Feedback: Review the Introduction to Kubernetes lesson.

Proprietary + Confidential

Question

What is the relationship between Kubernetes and Google Kubernetes Engine?

A. Google Kubernetes Engine is a closed-source variant of Kubernetes.

B. Google Kubernetes Engine is Kubernetes as a managed service.

C. Kubernetes and Google Kubernetes Engine are two names for the same thing.

Question #8

Proprietary + Confidential

Answer

What is the relationship between Kubernetes and Google Kubernetes Engine?

A. Google Kubernetes Engine is a closed-source variant of Kubernetes.

B. Google Kubernetes Engine is Kubernetes as a managed service.

C. Kubernetes and Google Kubernetes Engine are two names for the same thing.

Question #8

A: Incorrect.
B: Correct.
C: Incorrect.

Proprietary + Confidential

Question

What is the name for the computers in a Kubernetes cluster that can run your workloads?

A. Containers

B. Container images

C. Control Planes

D. Nodes

Question #9

Proprietary + Confidential

Answer

What is the name for the computers in a Kubernetes cluster that can run your workloads?

A. Containers

B. Container images

C. Control Planes

D. Nodes

Question #9

A: Incorrect.
B: Incorrect.
C: Incorrect.
Feedback: (In self-managed Kubernetes clusters, you can configure a control plane to
also run your workloads in addition to its responsibilities as a control plane, but it's not
the default, and this configuration is not possible in GKE.)
D: Correct.

Proprietary + Confidential

Question

Which of the following supports scaling a Kubernetes cluster as a whole?

A. Compute Engine

B. Google Kubernetes Engine

C. Kubernetes

Question #10

Proprietary + Confidential

Answer

Which of the following supports scaling a Kubernetes cluster as a whole?

A. Compute Engine

B. Google Kubernetes Engine

C. Kubernetes

Question #10

A: Incorrect.
Feedback: Even though GKE uses Compute Engine to provide its resources, the
capability to scale a cluster is provided by GKE itself. Attempting to scale a GKE
cluster using Compute Engine tools would be an error.
B: Correct.
C: Incorrect.
Feedback: The capability to scale a Kubernetes cluster is provided by GKE.

Proprietary + Confidential

Question

Google Compute Engine provides fine-grained control of costs. Which Compute Engine
features provide this level of control?

A. Autoscaling groups

B. Billing budgets and alerts

C. Fully customizable virtual machines

D. Managed instance groups

E. Per-second billing

Question #11

Proprietary + Confidential

Answer

Google Compute Engine provides fine-grained control of costs. Which Compute Engine
features provide this level of control?

A. Autoscaling groups

B. Billing budgets and alerts

C. Fully customizable virtual machines

D. Managed instance groups

E. Per-second billing

Question #11

A: Incorrect.
Feedback: Review the Computing Options lesson.
B: Incorrect.
Feedback: Review the Computing Options lesson.
C: Correct.
D: Incorrect.
Feedback: Review the Computing Options lesson.
E: Correct.

Proprietary + Confidential

Question

You are deploying a containerized application, and you want maximum control over how
containers are configured and deployed. You want to avoid the operational management
overhead of managing a full container cluster environment yourself. Which Google Cloud
compute solution should you choose?

A. App Engine

B. Cloud Functions

C. Compute Engine

D. Google Kubernetes Engine

Question #12

Proprietary + Confidential

Answer

You are deploying a containerized application, and you want maximum control over how
containers are configured and deployed. You want to avoid the operational management
overhead of managing a full container cluster environment yourself. Which Google Cloud
compute solution should you choose?

A. App Engine

B. Cloud Functions

C. Compute Engine

D. Google Kubernetes Engine

Question #12

A: Incorrect.
Feedback: Review the Computing Options lesson.
B: Incorrect.
Feedback: Review the Computing Options lesson.
C: Incorrect.
Feedback: Review the Computing Options lesson.
D: Correct.

Proprietary + Confidential

Agenda

Introduction to Containers

Lab: Working with Cloud Build

Introduction to Kubernetes

Introduction to Google Kubernetes
Engine

Computing Options

Quiz

Summary

Proprietary + Confidential

Summary
Create a container using Cloud Build.

Google Cloud compute solutions:

● Compute Engine
● App Engine
● Google Kubernetes Engine
● Cloud Run
● Cloud Functions

Store a container in Container Registry.

Compare and contrast Kubernetes and Google Kubernetes Engine (GKE) features.

That concludes ‘Introduction to Containers and Kubernetes’.

In this module, you learned how to create a container using Cloud Build to build and
manage your application images. You reviewed the five compute solutions offered by
Google Cloud starting from Compute Engine for lift-and-shift workloads, App Engine,
GKE, Cloud Run, and Cloud Functions and weighed the benefits of each with
common use cases.

In your labs, you created docker-formatted container images and saw how you can
privately store them in Container Registry. You also learned how to securely manage
your builds with the native integration with Cloud IAM.

Lastly, you learned that GKE supports automatic Kubernetes versions updates,
automatic repair for unhealthy nodes, and even scaling of the cluster itself for you.

All of this allows you to focus your time on dreaming up and writing your next great
application. This means less time worrying about infrastructure, managing and
maintaining deployment environments, securely building and sharing containers, and
having to solve for massive scale when your amazing idea hits that next big user
milestone.

In the next module, you’ll learn about the architecture of Kubernetes.

Proprietary + Confidential

