Containers in
the Cloud

Google Cloud

Containers in the Cloud

i
=
01 ~

@2 | Kubernetes and Google Kubernetes Engine

Introduction to containers

v

v/

v/
]

We've already explore Compute Engine—which is Google Cloud's infrastructure as a
service offering, with access to servers, file systems, and networking—and App
Engine, which is Google Cloud's platform as a service offering.

Containers in the Cloud

—

== S
@1 Introduction to containers >
v/
@2 | Kubernetes and Google Kubernetes Engine v
D
d -

In this section of the course, we'll explore containers and help you understand how
they are used.

Containers group your code and its dependencies

An invisible box around your code and its dependencies
A Has limited access to its own partition of the file system
<>

and hardware

quickly as a process

<>
(’* - Only requires a few system calls to create and starts as

- - Only needs an OS kernel that supports containers and a
container runtime, on each host

It scales like PaasS, but gives nearly the same flexibility as laaS

What are containers?

A container is an invisible box around your code and its dependencies with limited
access to its own partition of the file system and hardware. It only requires a few
system calls to create and it starts as quickly as a process. All that's needed on each
host is an OS kernel that supports containers and a container runtime.

In essence, the OS and dependencies are being virtualized. A container gives you the
best of two worlds - it scales like Platform as a Service (PaaS) but gives you nearly
the same flexibility as Infrastructure as a Service (IaaS.) This makes your code ultra
portable, and the OS and hardware can be treated as a black box. So you can go from
development, to staging, to production, or from your laptop to the cloud, without
changing or rebuilding anything.

In short, containers are portable, loosely coupled boxes of application code and
dependencies that allow you to “code once, and run anywhere.”

You can scale by duplicating single containers

.—‘ T
S e
e

Scale in seconds L

Scaling one container running the whole web server on a single host

Google Cloud

As an example, let’s say you want to launch and then scale a web server. With a
container, you can do this in seconds and deploy dozens or hundreds of them,
depending on the size or your workload, on a single host. This is because containers
can be easily “scaled” to meet demand.

This is just a simple example of scaling one container which is running your whole
application on a single host.

You can also scale an application with multiple containers

Host 1 Q Q
> Host 2 QQQ
rosts @ ® @

Modular, easily deployable, and scale independently across a group of hosts

Google Cloud

However, in practice you'll probably want to build your applications using lots of
containers, each performing their own function, as is done when using a
microservices architecture.

If you build applications this way and connect them with network connections, you
can make them modular, easily deployable, and able to be scaled independently
across a group of hosts.

The hosts can scale up and down and start and stop containers as demand for your
application changes, or as hosts fail.

Containers in the Cloud

i
e
01 ~
02

Introduction to containers

Kubernetes and Google Kubernetes Engine

v

v/

v/
]

A product that helps manage and scale containerized applications is Kubernetes. So
to save time and effort when scaling applications and workloads, Kubernetes can be
bootstrapped using Google Kubernetes Engine or GKE.

Kubernetes manages containerized workloads

It's an open-source platform for managing containerized workloads and
services.

It makes it easy to orchestrate many containers on many hosts, scale them
as microservices, and deploy rollouts and rollbacks.

At the highest level, it’s a set of APIs to deploy containers on a set of nodes
called a cluster.

It's divided into a set of primary components that run as the control plane
and a set of nodes that run containers.

You can describe a set of applications and how they should interact with
each other and Kubernetes figures how to make that happen.

So, what is Kubernetes? Kubernetes is an open-source platform for managing
containerized workloads and services. It makes it easy to orchestrate many
containers on many hosts, scale them as microservices, and easily deploy rollouts
and rollbacks.

At the highest level, Kubernetes is a set of APIs that you can use to deploy containers
on a set of nodes called a cluster.

The system is divided into a set of primary components that run as the control plane
and a set of nodes that run containers. In Kubernetes, a node represents a computing
instance, like a machine. Note that this is different to a node on Google Cloud which is
a virtual machine running in Compute Engine.

You can describe a set of applications and how they should interact with each other,
and Kubernetes determines how to make that happen.

Containers run in groups called “pods”

Unique IP

Cluster k1 Pod

k | Virtual Eth
Control plane ; Pod
od Pod / Port Port
~ L]
\ <> —<ID>
s-. © ® a=D

3T ite Node Node Node Volume A Volume A

Command: $> kubectl

Deploying containers on nodes by using a wrapper around one or more containers is
what defines a Pod. A Pod is the smallest unit in Kubernetes that you create or deploy.
It represents a running process on your cluster as either a component of your
application or an entire app.

Generally, you only have one container per pod, but if you have multiple containers
with a hard dependency, you can package them into a single pod and share
networking and storage resources between them. The Pod provides a unique network
IP and set of ports for your containers and configurable options that govern how your
containers should run.

One way to run a container in a Pod in Kubernetes is to use the kubectl run
command, which starts a Deployment with a container running inside a Pod.

Deployments are replicas of a specific pod

Cluster k1

Control plane

) - > Pod Pod
APls .
% © ©

Deploy Node Node

Pod
®

Node

Command: $> kubectl get pods

Google Cloud

A Deployment represents a group of replicas of the same Pod and keeps your Pods
running even when the nodes they run on fail. A Deployment could represent a

component of an application or even an entire app.
To see a list of the running Pods in your project, run the command:

$ kubectl get pods

Pods have fixed IPs to
connect to services

1

Load balancer with public IP

Cluster k1
Control plane Service with fixed IP
o L]
o
a ° Pod Pod Pod
Deploy Node Node Node

Command: $> kubectl expose deployments

nginx --port=80 --type=LoadBalancer

Google Cloud

Kubernetes creates a Service with a fixed IP address for your Pods, and a controller
says "l need to attach an external load balancer with a public IP address to that
Service so others outside the cluster can access it".

In GKE, the load balancer is created as a network load balancer.

Load balancers route g R 'I-F‘

traffic to pods

Load balancer with public IP

Cluster k1

Control plane

Service with fixed IP

o
a ° Pod Pod Pod

Deploy Node Node Node

Command: $> kubectl get service

Google Cloud

Any client that reaches that IP address will be routed to a Pod behind the Service. A
Service is an abstraction which defines a logical set of Pods and a policy by which to
access them.

As Deployments create and destroy Pods, Pods will be assigned their own IP
addresses, but those addresses don't remain stable over time.

A Service group is a set of Pods and provides a stable endpoint (or fixed IP address)
for them.

For example, if you create two sets of Pods called frontend and backend and put
them behind their own Services, the backend Pods might change, but frontend Pods
are not aware of this. They simply refer to the backend Service.

Deployments can be scaled on command

Cluster k1
Q‘ Control plane Service with fixed IP
D o =
o
c o Pod Pod Pod
Deploy Node Node Node

Command: $> kubectl scale

Google Cloud

To scale a Deployment, run the kubectl scale command.

In this example, three Pods are created in your Deployment, and they're placed behind
the Service and share one fixed IP address.

You could also use autoscaling with other kinds of parameters; for example, you can
specify that the number of pods should increase when CPU utilization reaches a
certain limit.

Configuration files describe how to epiversion: v

kind: Deployment

metadata:
create and scale deployments e i
labels:
app: nginx
spec:
Cluster k1 replicas: 3
selector:
matchLabels:
Control plane Service with fixed IP app: nginx
o template:
o metadata:
Q o Pod Pod Pod labels:
app: nginx
Deploy Node Node Node spec:
containers:

- name: nginx

Command: $> kubectl get deployments ;ro"f_gz EERIEY o Ue

- containerPort: 80

So far, we've seen how to run imperative commands like expose and scale. This works
well to learn and test Kubernetes step-by-step.

But the real strength of Kubernetes comes when you work in a declarative way.

Instead of issuing commands, you provide a configuration file that tells Kubernetes
what you want your desired state to look like, and Kubernetes determines how to do it.

You accomplish this by using a Deployment config file.

Deployments can be modified by apiversion: v1

kind: Deployment

1 1 H : metadata:
changing configuration files e i
labels:
app: nginx
spec:
Cluster k1 replicas: 5
selector:
matchLabels:
Control plane Service with fixed IP app: nginx
~ template:
e) & metadata:
g . Pod Pod Pod labels:
app: nginx
Deploy Node Node Node spec:
containers:
- name: nginx
i : inx:1.10.0
Command: $> kubectl apply -f ;Zi$::n91”X

nginx-deployment.yaml

- containerPort: 80

Google Cloud

You can check your Deployment to make sure the proper number of replicas is
running by using either kubectl get deployments or kubectl describe
deployments. To run five replicas instead of three, all you do is update the

Deployment config file and run the kubectl apply command to use the updated
config file.

Endpoints can be discovered using a kubectl command

Cluster k1
Control plane Service with fixed IP
APIs °
- > ﬁao Pod Pod Pod
o Pod Pod
Deploy Node Node Node
Command: $> kubectl get services

Google Cloud

You can still reach your endpoint as before by using kubectl get services to get
the external IP of the Service and reach the public IP address from a client.

Rolling updates can be triggered on the command line
or by updating the configuration file

Cluster k1 spec:
...
Control plane H s replicas: 3
Service with fixed IP strategy:
5 ° rollingUpdate:
maxSurge: 1
a ° Pod Pod Pod maxUnavailable: ©

type: RollingUpdate
Deploy Node Node Node # ...

Command: $> kubectl rollout

The last question is, what happens when you want to update a new version of your
app?

Well, you want to update your container to get new code in front of users, but rolling
out all those changes at one time would be risky.

So in this case, you would use kubectl rollout or change your deployment
configuration file and then apply the change using kubectl apply.

New Pods will then be created according to your new update strategy. Here is an
example configuration that will create new version Pods individually and wait for a
new Pod to be available before destroying one of the old Pods.

GKE is Google’s managed Kubernetes service

Cluster
’ 13 EO03 g0 EOI-
inn inn inn inl

So now that we have a basic understanding of containers and Kubernetes, let’s talk
about Google Kubernetes Engine, or GKE.

GKE is a Google-hosted managed Kubernetes service in the cloud. The GKE
environment consists of multiple machines, specifically Compute Engine instances,
grouped together to form a cluster.

GKE can create customized Kubernetes clusters

Kubernetes cluster

04 EOd EO:

O .
JY & 04 E03 EO:
OR :‘“ :“. :.“'

° s B e 3 n
gcloud command o °

You can create a Kubernetes cluster with Google Kubernetes Engine by using the
Google Cloud console or the gcloud command that's provided by the Cloud software
development kit. GKE clusters can be customized, and they support different machine
types, number of nodes, and network settings.

Kubernetes provides the mechanisms through which you interact with your cluster.
Kubernetes commands and resources are used to deploy and manage applications,
perform administration tasks, set policies, and monitor the health of deployed
workloads.

Benefits of running GKE clusters

Google Cloud's load-balancing for Compute Engine instances
Node pools to designate subsets of nodes within a cluster
Automatic scaling of your cluster's node instance count
Automatic upgrades for your cluster's node software

Node auto-repair to maintain node health and availability

Logging and monitoring with Google Cloud's operations suite

Running a GKE cluster comes with the benefit of advanced cluster management
features that Google Cloud provides. These include:

e Google Cloud's load-balancing for Compute Engine instances.

Node pools to designate subsets of nodes within a cluster for additional
flexibility.

Automatic scaling of your cluster's node instance count.

Automatic upgrades for your cluster's node software.

Node auto-repair to maintain node health and availability.

Logging and monitoring with Google Cloud's operations suite for visibility into
your cluster.

Start up Kubernetes on a cluster in GKE

Cluster k1
Command: $> gcloud Control plane Node
container clusters B — "o °
create ki1 Node
o
ot 3T Node

Google Cloud

To start up Kubernetes on a cluster in GKE, all you do is run this command:

$> gcloud container clusters create k1

Quiz | Question 1

Question

What is a Kubernetes pod?
A. A group of clusters

B. A group of nodes

C. Agroup of VMs

D. A group of containers

Quiz | Question 1

Answer

What is a Kubernetes pod?

A. A group of clusters

B. A group of nodes

C. Agroup of VMs

D. A group of containers 0

What is a Kubernetes pod?

A: A group of clusters

Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.

The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

B: A group of nodes

Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.

The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

C: A group of VMs

Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.

The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

D: A group of containers

Feedback: That's correct. In Kubernetes, a group of one or more containers is called a
pod. Containers in a pod are deployed together. They are started, stopped, and

replicated as a group.
The simplest workload that Kubernetes can deploy is a pod that consists only of a

single container.

Quiz | Question 2

Question

Where do the resources used to build Google Kubernetes Engine clusters come from?
A. Compute Engine

B. App Engine

C. Bare-metal servers

D

Cloud Storage

Quiz | Question 2

Answer

Where do the resources used to build Google Kubernetes Engine clusters come from?

A. Compute Engine Q
B. App Engine

C. Bare-metal servers

D

Cloud Storage

Where do the resources used to build Google Kubernetes Engine clusters come from?

A: Compute Engine

Feedback: Correct! Because the resources used to build Google Kubernetes Engine
clusters come from Compute Engine, Google Kubernetes Engine gets to take
advantage of Compute Engine’s and Google VPC's capabilities.

B: App Engine

Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC's capabilities.

C: Bare-metal servers

Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC'’s capabilities.

D: Cloud Storage

Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC's capabilities.

