
Proprietary + Confidential

Containers in
the Cloud

05

Proprietary + Confidential

Containers in the Cloud

Introduction to containers

Kubernetes and Google Kubernetes Engine

01
02

We've already explore Compute Engine–which is Google Cloud's infrastructure as a
service offering, with access to servers, file systems, and networking–and App
Engine, which is Google Cloud's platform as a service offering.

Proprietary + Confidential

Containers in the Cloud

Introduction to containers

Kubernetes and Google Kubernetes Engine

01
02

In this section of the course, we’ll explore containers and help you understand how
they are used.

Proprietary + Confidential

Containers group your code and its dependencies

An invisible box around your code and its dependencies

Has limited access to its own partition of the file system
and hardware

Only requires a few system calls to create and starts as
quickly as a process

Only needs an OS kernel that supports containers and a
container runtime, on each host

It scales like PaaS, but gives nearly the same flexibility as IaaS

What are containers?

A container is an invisible box around your code and its dependencies with limited
access to its own partition of the file system and hardware. It only requires a few
system calls to create and it starts as quickly as a process. All that’s needed on each
host is an OS kernel that supports containers and a container runtime.

In essence, the OS and dependencies are being virtualized. A container gives you the
best of two worlds - it scales like Platform as a Service (PaaS) but gives you nearly
the same flexibility as Infrastructure as a Service (IaaS.) This makes your code ultra
portable, and the OS and hardware can be treated as a black box. So you can go from
development, to staging, to production, or from your laptop to the cloud, without
changing or rebuilding anything.

In short, containers are portable, loosely coupled boxes of application code and
dependencies that allow you to “code once, and run anywhere.”

Proprietary + Confidential

You can scale by duplicating single containers

Scale in seconds

Scaling one container running the whole web server on a single host

As an example, let’s say you want to launch and then scale a web server. With a
container, you can do this in seconds and deploy dozens or hundreds of them,
depending on the size or your workload, on a single host. This is because containers
can be easily “scaled” to meet demand.

This is just a simple example of scaling one container which is running your whole
application on a single host.

Proprietary + Confidential

Modular, easily deployable, and scale independently across a group of hosts

You can also scale an application with multiple containers

Host 1

Host 2

Host 3

However, in practice you'll probably want to build your applications using lots of
containers, each performing their own function, as is done when using a
microservices architecture.

If you build applications this way and connect them with network connections, you
can make them modular, easily deployable, and able to be scaled independently
across a group of hosts.

The hosts can scale up and down and start and stop containers as demand for your
application changes, or as hosts fail.

Proprietary + Confidential

Containers in the Cloud

Introduction to containers

Kubernetes and Google Kubernetes Engine

01
02

A product that helps manage and scale containerized applications is Kubernetes. So
to save time and effort when scaling applications and workloads, Kubernetes can be
bootstrapped using Google Kubernetes Engine or GKE.

Proprietary + Confidential

Kubernetes manages containerized workloads

It’s an open-source platform for managing containerized workloads and
services.

It makes it easy to orchestrate many containers on many hosts, scale them
as microservices, and deploy rollouts and rollbacks.

At the highest level, it’s a set of APIs to deploy containers on a set of nodes
called a cluster.

It’s divided into a set of primary components that run as the control plane
and a set of nodes that run containers.

You can describe a set of applications and how they should interact with
each other and Kubernetes figures how to make that happen.

So, what is Kubernetes? Kubernetes is an open-source platform for managing
containerized workloads and services. It makes it easy to orchestrate many
containers on many hosts, scale them as microservices, and easily deploy rollouts
and rollbacks.

At the highest level, Kubernetes is a set of APIs that you can use to deploy containers
on a set of nodes called a cluster.

The system is divided into a set of primary components that run as the control plane
and a set of nodes that run containers. In Kubernetes, a node represents a computing
instance, like a machine. Note that this is different to a node on Google Cloud which is
a virtual machine running in Compute Engine.

You can describe a set of applications and how they should interact with each other,
and Kubernetes determines how to make that happen.

Proprietary + Confidential

Containers run in groups called “pods”

Node

Control plane

Node

Pod Port Port

Cluster k1

Node

Pod

Pod
Virtual Ethernet

Volume A Volume A

Unique IP

Command: $> kubectl

Deploying containers on nodes by using a wrapper around one or more containers is
what defines a Pod. A Pod is the smallest unit in Kubernetes that you create or deploy.
It represents a running process on your cluster as either a component of your
application or an entire app.

Generally, you only have one container per pod, but if you have multiple containers
with a hard dependency, you can package them into a single pod and share
networking and storage resources between them. The Pod provides a unique network
IP and set of ports for your containers and configurable options that govern how your
containers should run.

One way to run a container in a Pod in Kubernetes is to use the kubectl run
command, which starts a Deployment with a container running inside a Pod.

Proprietary + Confidential

Deployments are replicas of a specific pod

APIs

Command: $> kubectl get pods

Node

Control plane

Node

Pod

Cluster k1

Node

Pod Pod

Deploy

A Deployment represents a group of replicas of the same Pod and keeps your Pods
running even when the nodes they run on fail. A Deployment could represent a
component of an application or even an entire app.

To see a list of the running Pods in your project, run the command:

$ kubectl get pods

Proprietary + Confidential

Pods have fixed IPs to
connect to services

Command: $> kubectl expose deployments
nginx --port=80 --type=LoadBalancer

Node

Control plane

Node

Cluster k1

Node

Load balancer with public IP

Service with fixed IP
APIs

Deploy

Pod Pod Pod

Kubernetes creates a Service with a fixed IP address for your Pods, and a controller
says "I need to attach an external load balancer with a public IP address to that
Service so others outside the cluster can access it".

In GKE, the load balancer is created as a network load balancer.

Proprietary + Confidential

Load balancers route
traffic to pods

Node

Control plane

Node

Cluster k1

Node

Load balancer with public IP

Service with fixed IP
APIs

Deploy

Pod Pod Pod

Command: $> kubectl get service

Any client that reaches that IP address will be routed to a Pod behind the Service. A
Service is an abstraction which defines a logical set of Pods and a policy by which to
access them.

As Deployments create and destroy Pods, Pods will be assigned their own IP
addresses, but those addresses don't remain stable over time.

A Service group is a set of Pods and provides a stable endpoint (or fixed IP address)
for them.

For example, if you create two sets of Pods called frontend and backend and put
them behind their own Services, the backend Pods might change, but frontend Pods
are not aware of this. They simply refer to the backend Service.

Proprietary + Confidential

Deployments can be scaled on command

Node

Control plane

Node

Cluster k1

Node

Service with fixed IP
APIs

Deploy

Pod Pod Pod

Command: $> kubectl scale

To scale a Deployment, run the kubectl scale command.

In this example, three Pods are created in your Deployment, and they're placed behind
the Service and share one fixed IP address.

You could also use autoscaling with other kinds of parameters; for example, you can
specify that the number of pods should increase when CPU utilization reaches a
certain limit.

Proprietary + Confidential

Configuration files describe how to
create and scale deployments

Node

Control plane

Node

Cluster k1

Node

Service with fixed IP

Deploy

Pod Pod Pod

apiVersion: v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.15.7
 ports:
 - containerPort: 80

Command: $> kubectl get deployments

So far, we’ve seen how to run imperative commands like expose and scale. This works
well to learn and test Kubernetes step-by-step.

But the real strength of Kubernetes comes when you work in a declarative way.

Instead of issuing commands, you provide a configuration file that tells Kubernetes
what you want your desired state to look like, and Kubernetes determines how to do it.

You accomplish this by using a Deployment config file.

Proprietary + Confidential

Deployments can be modified by
changing configuration files

Node

Control plane

Node

Cluster k1

Node

Service with fixed IP

Deploy

Pod Pod Pod

Command: $> kubectl apply -f
nginx-deployment.yaml

apiVersion: v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.10.0
 ports:
 - containerPort: 80

You can check your Deployment to make sure the proper number of replicas is
running by using either kubectl get deployments or kubectl describe
deployments. To run five replicas instead of three, all you do is update the
Deployment config file and run the kubectl apply command to use the updated
config file.

Proprietary + Confidential

Endpoints can be discovered using a kubectl command

Node

Control plane

Node

Cluster k1

Node

Service with fixed IP
APIs

Deploy

Pod Pod Pod

Command: $> kubectl get services

Pod Pod

You can still reach your endpoint as before by using kubectl get services to get
the external IP of the Service and reach the public IP address from a client.

Proprietary + Confidential

Rolling updates can be triggered on the command line
or by updating the configuration file

Node

Control plane

Node

Cluster k1

Node

Service with fixed IP

Deploy

Pod Pod Pod

spec:
 # ...
 replicas: 5
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 type: RollingUpdate
 # ...

Command: $> kubectl rollout

The last question is, what happens when you want to update a new version of your
app?

Well, you want to update your container to get new code in front of users, but rolling
out all those changes at one time would be risky.

So in this case, you would use kubectl rollout or change your deployment
configuration file and then apply the change using kubectl apply.

New Pods will then be created according to your new update strategy. Here is an
example configuration that will create new version Pods individually and wait for a
new Pod to be available before destroying one of the old Pods.

Proprietary + Confidential

GKE is Google’s managed Kubernetes service

Cluster

So now that we have a basic understanding of containers and Kubernetes, let’s talk
about Google Kubernetes Engine, or GKE.

GKE is a Google-hosted managed Kubernetes service in the cloud. The GKE
environment consists of multiple machines, specifically Compute Engine instances,
grouped together to form a cluster.

Proprietary + Confidential

GKE can create customized Kubernetes clusters

 gcloud command

OR

Kubernetes cluster

You can create a Kubernetes cluster with Google Kubernetes Engine by using the
Google Cloud console or the gcloud command that's provided by the Cloud software
development kit. GKE clusters can be customized, and they support different machine
types, number of nodes, and network settings.

Kubernetes provides the mechanisms through which you interact with your cluster.
Kubernetes commands and resources are used to deploy and manage applications,
perform administration tasks, set policies, and monitor the health of deployed
workloads.

Proprietary + Confidential

Benefits of running GKE clusters

Google Cloud's load-balancing for Compute Engine instances

Node pools to designate subsets of nodes within a cluster

Automatic scaling of your cluster's node instance count

Automatic upgrades for your cluster's node software

Node auto-repair to maintain node health and availability

Logging and monitoring with Google Cloud's operations suite

Running a GKE cluster comes with the benefit of advanced cluster management
features that Google Cloud provides. These include:

● Google Cloud's load-balancing for Compute Engine instances.
● Node pools to designate subsets of nodes within a cluster for additional

flexibility.
● Automatic scaling of your cluster's node instance count.
● Automatic upgrades for your cluster's node software.
● Node auto-repair to maintain node health and availability.
● Logging and monitoring with Google Cloud's operations suite for visibility into

your cluster.

Proprietary + Confidential

Start up Kubernetes on a cluster in GKE

Command: $> gcloud
container clusters
create k1

Cluster k1

Node

Node

Node

Control plane

To start up Kubernetes on a cluster in GKE, all you do is run this command:

$> gcloud container clusters create k1

Proprietary + Confidential

Module Quiz

Proprietary + Confidential

Quiz | Question 1

Question

What is a Kubernetes pod?

A. A group of clusters

B. A group of nodes

C. A group of VMs

D. A group of containers

Proprietary + Confidential

What is a Kubernetes pod?

A. A group of clusters

B. A group of nodes

C. A group of VMs

D. A group of containers

Quiz | Question 1

Answer

What is a Kubernetes pod?

A: A group of clusters
Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.
The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

B: A group of nodes
Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.
The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

C: A group of VMs
Feedback: Sorry, that's not correct. In Kubernetes, a group of one or more containers
is called a pod. Containers in a pod are deployed together. They are started, stopped,
and replicated as a group.
The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

D: A group of containers

Feedback: That's correct. In Kubernetes, a group of one or more containers is called a
pod. Containers in a pod are deployed together. They are started, stopped, and
replicated as a group.
The simplest workload that Kubernetes can deploy is a pod that consists only of a
single container.

Proprietary + Confidential

Quiz | Question 2

Question

Where do the resources used to build Google Kubernetes Engine clusters come from?

A. Compute Engine

B. App Engine

C. Bare-metal servers

D. Cloud Storage

Proprietary + Confidential

Where do the resources used to build Google Kubernetes Engine clusters come from?

A. Compute Engine

B. App Engine

C. Bare-metal servers

D. Cloud Storage

Quiz | Question 2

Answer

Where do the resources used to build Google Kubernetes Engine clusters come from?

A: Compute Engine
Feedback: Correct! Because the resources used to build Google Kubernetes Engine
clusters come from Compute Engine, Google Kubernetes Engine gets to take
advantage of Compute Engine’s and Google VPC’s capabilities.

B: App Engine
Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC’s capabilities.

C: Bare-metal servers
Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC’s capabilities.

D: Cloud Storage
Feedback: Sorry, that's not correct. Because the resources used to build Google
Kubernetes Engine clusters come from Compute Engine, Google Kubernetes Engine
gets to take advantage of Compute Engine’s and Google VPC’s capabilities.

