
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

© 2017 Google Inc. All rights reserved. Google
and the Google logo are trademarks of Google Inc.
All other company and product names may be
trademarks of the respective companies with
which they are associated.

Best Practices for Using Cloud
Storage
Developing Applications with Google Cloud Platform

CLOUD STORAGE

Version 2.0
Last modified: 2017-09-11

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Performing Operations on Buckets
and Objects

2

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Google Cloud Storage Concepts
3

Resources are entities in Google Cloud Platform including:

● Projects
● Buckets - the basic Cloud Storage container
● Objects - the individual pieces of data that you store in Google

Cloud Storage

For more information, see: https://cloud.google.com/storage/docs/key-terms

https://cloud.google.com/storage/docs/key-terms

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Storage classes
4

Storage Class Characteristics Use Cases Price (per GB per month) Name for APIs

Multi-Regional Storage ● 99.95% availability
● Geo-redundant

● Serving website
content

● Streaming videos
● Mobile apps

$0.026 multi_regional

Regional Storage ● 99.9% availability
● Data stored in a

narrow geographic
region

● Data analytics $0.02 regional

Nearline Storage ● 99.0% availability
● Data retrieval costs
● Higher per-operation

costs
● 30-day minimum

storage duration

● Back-up
● Serving long-tail

multimedia content

$0.01 nearline

Coldline Storage ● 99.0% availability
● Data retrieval costs
● higher per-operation

costs
● 90-day minimum

storage duration

● Disaster recovery
● Data archiving

$0.007 coldline

Google Cloud Storage has four storage classes, with different characteristics, use
cases, and prices for your needs.

The Multi-Regional Storage class is designed for 99.95% availability and is
geo-redundant. Ideal use cases include serving website content, streaming videos,
and storing data for mobile applications.

The Regional Storage class is designed for 99.9% availability and data is stored in a
narrow geographic region. Ideal use cases include frequently accessing data in the
same region as your Google Cloud DataProc or Google Compute Engine instances
that use it, such as for data analytics.

The Nearline Storage class is designed for 99.0% availability, has data retrieval costs
and higher per-operation costs, and has a 30-day minimum storage duration. Ideal
use cases include back-ups and serving long-tail multimedia content.

The Coldline Storage class is designed for 99.0% availability, has data retrieval costs
and higher per-operation costs, and has a 90-day minimum storage duration. Ideal
use cases include disaster recovery and data archiving.

For more information, see: https://cloud.google.com/storage/docs/storage-classes

https://cloud.google.com/storage/docs/storage-classes

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Demo: Explore Cloud Storage
5

1. Create a Cloud Storage bucket in the Console.
2. Upload files to Cloud Storage in the Console.
3. Manipulate Cloud Storage using Cloud Shell.
4. Enable and manage object versioning.

Demo: Exploring Cloud Storage

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

The following operations are strongly consistent

● Read-after-write
● Read-after-metadata-update
● Read-after-delete
● Bucket listing
● Object listing
● Granting access to resources

6

Bucket

ReadWrite

Success
Response

Strongly consistent: when you perform an operation in
Cloud Storage and receive a success response, the object
is immediately available for download and metadata
operations.

Strongly consistent operations mean that when you perform an operation in Cloud
Storage and you receive a success response, the object is immediately available for
download and metadata operations from any location where Google offers service.
The following operations in Google Cloud Storage are strongly consistent:
read-after-write, read-after-metadata-update, read-after-delete, bucket listing, object
listing, and granting access to resources.

For more information, see: https://cloud.google.com/storage/docs/consistency

https://cloud.google.com/storage/docs/consistency

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

The following operations are eventually consistent

● Revoking access from objects
● Accessing publicly readable cached objects

7

Bucket

Access
revoked

Revoke
access

Eventually consistent: when you perform an operation, it
may take some time for the operations to take effect.

Success
Response

Revoking access can
take up to a minute to
take effect.

The following operations are eventually consistent: revoking access from objects and
accessing publicly readable cached objects. Revoking access can take up to a
minute for changes to take effect, so operations won’t be consistent until the
revocation has taken place. Publicly readable cached objects are eventually
consistent if the object is in the cache when it is updated or deleted. When the object
in the cache is updated or deleted, the operation doesn’t take effect until its cache
lifetime expires.

For more information, see:
https://cloud.google.com/storage/docs/consistency#eventually_consistent_operations

https://cloud.google.com/storage/docs/consistency#eventually_consistent_operations

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use the following request endpoints:
URIs HTTP HTTPS

Typical API
Requests

XML:
storage.googleapis.com/<bucket>/<object>
<bucket>.storage.googleapis.com/<object>
JSON:
www.googleapis.com/download/storage/v1/b/<bucket>/o/<object-encoded-as-URL-path-s
egment>?alt=media

✅ ✅

CNAME Redirects Use the following URI in the host name portion of your CNAME record:
c.storage.googleapis.com.

Example: if you publish travel-maps.example.com CNAME c.storage.googleapis.com., you could
access the object at: http://travel-maps.example.com/paris.jpg

✅

Authenticated
Browser
Downloads

To download an object using cookie-based authentications:
https://storage.cloud.google.com/<bucket>/<object>

✅

Content-Based
Load Balancing

Create a back end bucket for your Cloud Storage bucket and modify the web-map URL map. To fetch
resources:
http://[IP_ADDRESS]/static/[OBJECT_NAME] or
https://[IP_ADDRESS]/static/[OBJECT_NAME]

✅ ✅

8

Depending on the operation you are performing and your application requirements,
you can access Google Cloud Storage through three request endpoints (URIs).

Using the XML API, you can use the two listed URIs, and using the JSON API, you
can use the listed URI. These URIs support secure sockets layer (SSL) encryption, so
you can use either HTTP or HTTPS. If you authenticate to the Google Cloud Storage
API using OAuth 2.0, you should use HTTPS.

A CNAME redirect is a special DNS record that lets you use a URI from your own
domain to access a resource (bucket and object) in Google Cloud Storage without
revealing the Google Cloud Storage URI. For example, if you published the following,
travel-maps.example.com CNAME c.storage.googleapis.com, you could
access an object with the following URI: http://travel-maps.example.com/paris.jpg.
You can only use CNAME redirects with HTTP.

You can also access resources using authenticated browser downloads, which let you
download data through your browser if you are signed in to your Google account and
have been granted permission to read the data. Authenticated browser downloads
use cookie-based Google account authentication in conjunction with Google
account-based ACLs. To download an object using cookie-based authentication, you
must use the following URI: https://storage.cloud.google.com/<bucket>/<object>. Only
HTTPS is supported.

You can modify the content-based load balancing configuration to route requests for

http://travel-maps.example.com/paris.jpg
https://storage.cloud.google.com/

static content to a Cloud Storage bucket. Requests to URI paths that begin with /static
are sent to your storage bucket, and all other requests are sent to your virtual
machine instances. You will create a back end bucket for your Cloud Storage bucket,
modify the web-map URI map, and fetch resources using either
http://[IP_ADDRESS]/static/[OBJECT_NAME] or
https://[IP_ADDRESS]/static/[OBJECT_NAME].

For more information, see:
Cookie-Based Authentications:
https://cloud.google.com/storage/docs/authentication.html#cookieauth
Request Endpoints: https://cloud.google.com/storage/docs/request-endpoints
Content-Based Load Balancing:
https://cloud.google.com/compute/docs/load-balancing/http/adding-a-backend-bucket-
to-content-based-load-balancing

https://cloud.google.com/storage/docs/authentication.html#cookieauth
https://cloud.google.com/storage/docs/request-endpoints
https://cloud.google.com/compute/docs/load-balancing/http/adding-a-backend-bucket-to-content-based-load-balancing
https://cloud.google.com/compute/docs/load-balancing/http/adding-a-backend-bucket-to-content-based-load-balancing

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Composite objects and parallel uploads

Combine up to 32 objects into a single new object.

Use cases include:

• Dividing your data and uploading each chunk to a distinct object, composing your
final object, and deleting any temporary objects.

• Uploading data to a temporary new object, composing it with the object you want
to append it to, and deleting the temporary object.

Compose an object of smaller chunks using gsutil:

gsutil compose gs://example-bucket/component-obj-1

gs://example-bucket/component-obj-2

gs://example-bucket/composite-object

9

You can compose up to 32 existing objects into a new object without transferring
additional object data.

Object composition can be used for uploading an object in parallel: simply divide your
data into multiple chunks, upload each chunk to a distinct object in parallel, compose
your final object, and delete any temporary objects.

In parallel uploads, you divide an object into multiple pieces, upload the pieces to a
temporary location simultaneously, and compose the original object from these
temporary pieces.

Some use cases include:
● Fully use your available bandwidth by dividing your data into chunks and

uploading them separately.
● Copying many files in parallel with a single command in big data scenarios.

For more information, see:
Composite objects: https://cloud.google.com/storage/docs/composite-objects
Working with Objects: https://cloud.google.com/storage/docs/object-basics

https://cloud.google.com/storage/docs/composite-objects
https://cloud.google.com/storage/docs/object-basics

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Design your application to handle network failures with
truncated exponential backoff

10

Truncated exponential backoff:

 Is a standard error-handling strategy for network applications.
 Periodically retries failed requests with increasing delays between requests.
 Should be used for all requests to Google Cloud Storage that return HTTP 5xx

and 429 response codes.

@retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)

def wait_exponential_1000():

 print "Wait 2^x * 1000 milliseconds between each retry, up to 10 seconds, then 10 seconds afterwards"

Truncated exponential backoff is a standard error-handling strategy for network
applications in which a client periodically retries a failed request with increasing
delays between requests.

Clients should use truncated exponential backoff for all requests to Google Cloud
Storage that return HTTP 5xx and 429 response codes, including uploads and
downloads of data or metadata.

Understanding how truncated exponential backoff works is important if you are
building client applications that use the Google Cloud Storage XML API or JSON API
directly, accessing Google Cloud Storage through a client library (some client
libraries, such as the Cloud Storage Client Library for Node.js, have built-in
exponential backoff), or using the gsutil command line tool (has configurable retry
handling).

The Google Cloud Platform Console sends requests to Google Cloud Storage on your
behalf and will handle any necessary backoff.

The example shows a backoff implementation for the Python retry library when you
retry distributed services and other remote endpoints.

For more information, see: https://cloud.google.com/storage/docs/exponential-backoff

https://cloud.google.com/storage/docs/exponential-backoff

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Best Practices for Using Cloud
Storage

12

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Do

Use globally unique bucket names:
us-east1-appdev-bucket01

Use GUIDs or the equivalent if your application needs a lot of
buckets:
037763b8-2b55-4887-bbb9-600e2c6c6014
f41b0c0c-9cfc-405d-970e-d4ee46e41279
7f62c421-ce22-4c3f-ad9c-17f342500f62

Conform to standard DNS naming conventions:
mycompany-unique-bucket01
yourllc-011-eu-central1

Follow these best practices for naming

Don’t

Use personally identifiable information (PII):
johndoebucket

Use user IDs, emails, project names/IDs, etc:
johndoe
project-gcp-sales

Use IP address notation:
192.168.5.4

Use the goog prefix or include any spelling or close
misspelling of google:
goog_bucket01284
bucket-for-google-course01

13

Google Cloud Storage bucket names are global and publicly visible and must be
unique across the entire Google Cloud Storage. If your applications require many
buckets, use GUIDs or the equivalent for bucket names. Your application should have
retry logic in place to handle name collisions. Consider keeping a list to
cross-reference your buckets.

Avoid using any information in bucket names that can be used to probe for the
existence of other resources. Use caution if putting personally identifiable information
in object or bucket names, because they appear in URLs. Bucket names should
conform to standard DNS naming conventions, because the bucket name can appear
in a DNS record as part of a CNAME redirect.

If you use part of your company domain name in a bucket name (forward or reverse),
Google will try to verify that you own the domain. Avoid using your company domain
name in a bucket unless your DNS admin can verify ownership.
For more information, see:
https://cloud.google.com/storage/docs/bucket-naming#requirements

https://cloud.google.com/storage/docs/bucket-naming#requirements

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Follow these best practices for Cloud Storage traffic

● Consider:
○ Operations per second
○ Bandwidth
○ Cache control

● Design your application to minimize
spikes in traffic.

● Use exponential backoff if you get an
error.

● For request rates > 1000 write
requests/second or 5000 read
requests/second:
○ Start with a request rate

below or near the threshold.
○ Double the request rate no

faster than every 20
minutes.

14

Consider operations per second, bandwidth (how much data will be sent over what
time frame), and cache control when designing your application with Cloud Storage. If
you specify the Cache-Control metadata on objects, read latency will be lowered on
hot or frequently accessed objects. Use exponential backoff if you get an error. For
more information on setting object metadata, see:
https://cloud.google.com/storage/docs/viewing-editing-metadata#edit

Design your application so that it minimizes spikes in traffic; spread updates out
throughout the day. Google Storage has no upper bound on request rate, but for best
performance when scaling to high request rates, follow the request rate and access
distribution guidelines: If your request rate is less than 1000 write requests per
second or 5000 read requests per second, then no ramp-up is needed. If your request
rate is expected to go over these thresholds, you should start with a request rate
below or near the thresholds and then double the request rate no faster than every 20
minutes. For more information, see:
https://cloud.google.com/storage/docs/request-rate

https://cloud.google.com/storage/docs/viewing-editing-metadata#edit
https://cloud.google.com/storage/docs/request-rate

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider location and availability of your data for storage
options

15

End UsersStore data in a
region closest
to your
application’s
users.

Bucket

Consider compliance
requirements when
choosing data
location.

For analytics
workloads,
store data in
regional
buckets.

Multi-
region: US

Multi-region: EU

Multi-region:
Asia

Consider the location and required availability of your data when choosing your
storage options.

Store data in a region closest to your application’s users, and consider region-specific
compliance requirements when choosing data location. For analytics workloads, store
your data in regional buckets to reduce network charges and for better performance
(compared to multi-regional).

For more information, see: https://cloud.google.com/security/compliance

https://cloud.google.com/security/compliance

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

More location and availability considerations

● Multi-Regional and Regional Storage:
○ Provide the best availability.
○ Are good options for data served at a high rate with high availability.

● Nearline and Coldline Storage are good options for:
○ Infrequently accessed data.
○ Data that tolerates slightly lower availability.

16

Multi-Regional Storage and Regional Storage provide the best availability, with the
trade-off of a higher price, and are good options for data that is served at a high rate
with high availability.

Nearline Storage and Coldline Storage are good options for infrequently accessed
data and for data that tolerates slightly lower availability.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Secure your buckets using the following options
17

Use Identity and Access
Management (IAM)
permissions to grant:

● Access to buckets
● Bulk access to a

bucket’s objects

Use Access Control Lists (ACLs)
to grant:

● Read or write access to users
for individual buckets or objects

● Access when fine-grained
control over individual objects is
required

Signed URLs (query string
authentication):

● Provide time-limited read or
write access to an object.
through a generated URL

● Can be created using gsutil or
programmatically.

Use Signed Policy Documents to:

● Specify what can be uploaded
to a bucket.

● Control size, content type, and
other upload characteristics.

Firebase Security Rules
provide:

● Granular, attribute-based
access control to mobile and
web apps using the Firebase
SDKs for Cloud Storage

You can control access to your Cloud Storage buckets and objects using these
options.

You can use Identity and access Management (IAM) permissions to grant access to
buckets and to provide bulk access to a bucket’s objects. IAM permissions do not
give you fine-grained control over individual objects. For more information, see:
https://cloud.google.com/storage/docs/access-control/using-iam-permissions

You can use Access Control Lists (ACLs) to grant read or write access to users for
individual buckets or objects. It is recommended that you only use ACLs when you
need fine-grained control over individual objects. For more information, see:
https://cloud.google.com/storage/docs/access-control/create-manage-lists

Use signed URLs (query string authentication) to provide time-limited read or write
access to an object through a URL you generate. The shared URL provides access to
anyone it’s shared with for the duration specified. You can create signed URLs using
gsutil or programmatically with your application. For more information, see:
Create a signed URL using gsutil:
https://cloud.google.com/storage/docs/access-control/create-signed-urls-gsutil
Create a signed URL programatically:
https://cloud.google.com/storage/docs/access-control/create-signed-urls-program

Signed policy documents allow you to specify what can be uploaded to a bucket.
They allow greater control over size, content type, and other upload characteristics

https://cloud.google.com/storage/docs/access-control/using-iam-permissions
https://cloud.google.com/storage/docs/access-control/create-manage-lists
https://cloud.google.com/storage/docs/access-control/create-signed-urls-gsutil
https://cloud.google.com/storage/docs/access-control/create-signed-urls-program

than using signed URLs. They are for website owners to allow visitors to upload files
to Google Cloud Storage. Signed policy documents only work with form posts. For
more information on signed policy documents, see:
https://cloud.google.com/storage/docs/xml-api/post-object#policydocument

Firebase security rules provide granular, attribute-based access control to mobile and
web applications using the Firebase SDKs for Cloud Storage. For more information,
see: https://firebase.google.com/docs/storage/security

https://cloud.google.com/storage/docs/xml-api/post-object#policydocument
https://firebase.google.com/docs/storage/security

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider the following when using gsutil for Cloud Storage

● gsutil -D will include OAuth2 refresh and access tokens in the
output.

● gsutil --trace-token will include OAuth2 tokens and the contents
of any files accessed during the trace.

● Customer-supplied encryption key information in .boto config is
security-sensitive.

● In a production environment, use a service account for gsutil.

18

If you run gsutil -D (to generate debugging output) it will include OAuth2 refresh and
access tokens in the output. Make sure to redact this information before sending this
debug output to anyone during troubleshooting/tech support interactions.

If you run gsutil --trace-token (to send a trace directly to Google), sensitive information
like OAuth2 tokens and the contents of any files accessed during the trace may be
included in the content of the trace.

Customer-supplied encryption key information in the .boto configuration is security
sensitive. The proxy configuration information in the .boto configuration is
security-sensitive, especially if your proxy setup requires user and password
information. Even if your proxy setup doesn't require user and password information,
the host and port number for your proxy is often considered security-sensitive. Protect
access to your .boto configuration file.

If you are using gsutil from a production environment, use service account credentials
instead of individual user account credentials. These credentials were designed for
such use and protect you from losing access when an employee leaves your
company.

For more information, see:
https://cloud.google.com/storage/docs/gsutil/addlhelp/SecurityandPrivacyConsideratio
ns#recommended-user-precautions

https://cloud.google.com/storage/docs/gsutil/addlhelp/SecurityandPrivacyConsiderations#recommended-user-precautions
https://cloud.google.com/storage/docs/gsutil/addlhelp/SecurityandPrivacyConsiderations#recommended-user-precautions

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider these additional security best practices

● Use TLS (HTTPS) to transport data.
● Use an HTTPS library that validates server certificates.
● Revoke authentication credentials to applications that no longer need access to data.
● Securely store credentials.
● Use groups instead of large numbers of users.
● Bucket and object ACLs are independent of each other.
● Avoid making buckets:

○ Publicly readable
○ Publicly writable

20

Always use TLS (HTTPS) to transport your data when you can. This ensures that
both your credentials and your data are protected as you transport data over the
network.

Make sure that you use an HTTPS library that validates server certificates. A lack of
server certificate validation makes your application vulnerable to man-in-the-middle
attacks or other attacks. Be aware that HTTPS libraries shipped with certain
commonly used implementation languages do not, by default, verify server
certificates.

When applications no longer need access to your data, you should revoke their
authentication credentials. To do this for Google services and APIs, sign in to your
Google Account and click Authorizing applications and sites. On the next page, you
can revoke access for applications by clicking Revoke Access next to the application.

Make sure that you securely store your credentials. This can be done differently
depending on your environment and where you store your credentials.

Use groups in preference to explicitly listing large numbers of users. Not only does it
scale better, it also provides a very efficient way to update the access control for a
large number of objects all at once. It’s cheaper because you don’t need to make a
request per-object to change the ACLs.
Before adding objects to a bucket, check that the default object ACLs are set to your
requirements first. This could save you a lot of time updating ACLs for individual

objects.

Bucket and object ACLs are independent of each other, which means that the ACLs
on a bucket do not affect the ACLs on objects inside that bucket. It is possible for a
user without permissions for a bucket to have permissions for an object inside the
bucket.

The Google Cloud Storage access control system includes the ability to specify that
objects are publicly readable. After a bucket has been made publicly readable, data
on the internet can be copied to many places. It's effectively impossible to regain read
control over an object written with this permission. The Google Cloud Storage access
control system also includes the ability to specify that buckets are publicly writable.
Although configuring a bucket this way can be convenient for various purposes, we
recommend against using this permission: it can be abused for distributing illegal
content, viruses, and other malware, and the bucket owner is legally and financially
responsible for the content stored in their buckets.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider these best practices for uploading data

● If using XMLHttpRequests:
○ Don’t close and re-open the connection
○ Set reasonably long timeouts for upload traffic

● Make the request to create the resumable upload URL from the same region as the
bucket and upload location.

● Avoid breaking transfers into smaller chunks
● Avoid uploading content that has both:

○ content-encoding gzip

○ content-type that is compressed

22

If you use XMLHttpRequest (XHR) callbacks to get progress updates and detect that
progress has stalled, do not close and re-open the connection. Doing so creates a
bad positive feedback loop during times of network congestion. When the network is
congested, XHR callbacks can get backlogged behind the acknowledgement
(ACK/NACK) activity from the upload stream, and closing and reopening the
connection when this happens uses more network capacity at exactly the time when
you can least afford it.

For upload traffic, set reasonably long timeouts. For a good end-user experience, you
can set a client-side timer that updates the client status window with a message (e.g.,
"network congestion") when your application hasn't received an XHR callback for a
long time. Don't just close the connection and try again when this happens.

If you use Google Compute Engine instances with processes that POST to Cloud
Storage to initiate a resumable upload, you should use Compute Engine instances in
the same locations as your Cloud Storage buckets. You can then use a geo IP
service to pick the Compute Engine region to which you route customer requests,
which will help keep traffic localized to a geo-region. For resumable uploads, the
resumable session should stay in the region in which it was created. Doing so
reduces cross-region traffic that arises when reading and writing the session state,
which improves resumable upload performance.

Avoid breaking a transfer into smaller chunks if possible, and instead upload the
entire content in a single chunk. Avoiding chunking removes fixed latency costs,

improves throughput, and reduces QPS against Google Cloud Storage.

If possible, avoid uploading content that has both content-encoding: gzip and a
content-type that is compressed, because this may lead to unexpected behavior. You
can also use decompressive transcoding (automatically decompressing a file for the
requestor) by storing the file in gzip format in Cloud Storage and setting the
associated metadata to Content-Encoding: gzip. For more information, see:
https://cloud.google.com/storage/docs/transcoding#decompressive_transcoding

https://cloud.google.com/storage/docs/transcoding#decompressive_transcoding

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Validate your data

Data can be corrupted during upload
or download by:

● Noisy network links
● Memory errors on:

○ Client computer
○ Server computers
○ Routers along the path

● Software bugs

Validate data transferred to/from bucket using:

● CRC32c Hash
○ Is available for all cloud storage

objects.
○ Can be computed using these

libraries:
■ Boost for C++
■ crcmod for Python
■ digest-crc for Ruby

○ gsutil automatically performs
integrity checks on all uploads and
downloads.

● MD5 Hash
○ Is supported for non-composite

objects.
○ Cannot be used for partial

downloads.

24

Data can be corrupted while it is uploaded to or downloaded from the cloud by noisy
network links, memory errors on client or server computers or routers along the path,
and software bugs. Validate the data you transfer to/from buckets using either
CRC32c or MD5 checksums.

Google Cloud Storage supports server-side validation for uploads, but client-side
validation is also a common approach. If your application has already computed the
object’s MD5 or CRC32c before starting the upload, you can supply it with the upload
request, and Google Cloud Storage will create the object only if the hash you
provided matches the value Google calculated. Alternatively, users can perform
client-side validation by issuing a request for the new object’s metadata, comparing
the reported hash value, and deleting the object in case of a mismatch.

All Google Cloud Storage objects have a CRC32c hash. Libraries for computing
CRC32c include Boost for C++, crcmod for Python, and digest-crc for Ruby. Java
users can find an implementation of the algorithm in the GoogleCloudPlatform crc32
Java project. Gsutil automatically performs integrity checks on all uploads and
downloads. Additionally, you can use the "gsutil hash" command to calculate a CRC
for any local file.

MD5 hashes are supported for non-composite objects. The MD5 hash only applies to
a complete object so it cannot be used to integrity check partial downloads cause by
performing a range GET.

https://github.com/GoogleCloudPlatform/crc32c-java
https://github.com/GoogleCloudPlatform/crc32c-java

For more information, see:
Hashes and e-tags: https://cloud.google.com/storage/docs/hashes-etags
CRC32C and Installing crcmod:
https://cloud.google.com/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod

https://cloud.google.com/storage/docs/hashes-etags
https://cloud.google.com/storage/docs/gsutil/addlhelp/CRC32CandInstallingcrcmod

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

You can host static websites.

You can allow scripts hosted on
other websites to access static
resources stored in a Google
Cloud Storage bucket.

22

You can also allow scripts hosted in Google
Cloud Storage to access static resources
hosted on a website external to Cloud
Storage.

The Cross-Origin Resource Sharing (CORS) topic describes how to allow scripts
hosted on other websites to access static resources stored in a Google Cloud Storage
bucket.

You can also allow scripts hosted in Google Cloud Storage to access static resources
hosted on a website external to Cloud Storage. The website is serving CORS headers
so that content on storage.googleapis.com is allowed access. It is recommended that
you dedicate a specific bucket for this data access.

For more information, see: https://cloud.google.com/storage/docs/cross-origin

https://cloud.google.com/storage/docs/cross-origin

