Best Practices for Using Cloud
Datastore

Developing Applications with Google Cloud Platform

CLOUD DATASTORE, CLOUD BIGTABLE

@ (OLVIIAW.Y:1-8 STORING APPLICATION DATA IN CLOUD DATASTORE

Version 2.0
Last modified: 2017-09-25 GO g|€ Cloud

This presentation discusses considerations for building an application with Google
Cloud Datastore.

For more information on Google Cloud Datastore, see:
https://cloud.google.com/datastore/docs/datastore-api-tutorial

For more information on Google Cloud Datastore Best Practices, see:
https://cloud.google.com/datastore/docs/best-practices



https://cloud.google.com/datastore/docs/datastore-api-tutorial
https://cloud.google.com/datastore/docs/best-practices

O

O

O

O

Cloud Datastore concepts

e Data objects are called entities.

e Entities are made up of one or more properties.

e Properties can have one or more values.

e Each entity has a key that uniquely identifies it, composed of:

Namespace

Entity kind

Identifier (either a string or numeric ID)
Ancestor ID (optional)

e Operations on one or more entities are called transactions.

—

/Kind: Customer

Entity

Key

Property
Property

Property

Q

(o)

\

4

Google Cloud

Data objects in Cloud Datastore are called entities and they are made up of one or
more properties. Properties can have one or more values. Each entity has a key that
uniquely identifies it, composed of a namespace, the entity kind, an identifier, and an
optional ancestor ID. Operations on one or more entities are called transactions and
are atomic.

For more information, see:

Entities: https://cloud.google.com/datastore/docs/concepts/entities

Transactions: https://cloud.google.com/datastore/docs/concepts/transactions



https://cloud.google.com/datastore/docs/concepts/entities
https://cloud.google.com/datastore/docs/concepts/transactions

You can specify ancestors of an entity.

Customer: Root entity
John Doe

Invoice: June Ancestor
Product:
Pencil

-

Complete key of Pencil entity:
[Customer:John Doe, Invoice: June, Product: Pencil]

When you create an entity, you can specify another entity as its parent. An entity
without a parent is a root entity.

An entity’s parent, the parent’s parent, etc. are its ancestors. An entity’s child, the
child’s child, etc. are descendants.

The sequence of entities from the root entity to a specific entity forms the ancestor
path.

The example shows an entity John Doe of the Customer kind - the root entity. The
complete key for the Pencil entity includes the kind-identifier pairs Customer John
Doe, Invoice June, and the Pencil entity itself.

For more information about Entities, properties, and keys see
https://cloud.google.com/datastore/docs/concepts/entities



https://cloud.google.com/datastore/docs/concepts/entities

Datastore has two types of indexes

Built-in indexes Composite indexes

e Automatically pre-define an e Index multiple property values
index for each property of each for indexed entity
entity kind e Support complex queries

e Are suitable for simple types of e Are defined in an index
queries configuration file

Built-in indexes are sufficient to perform many simple queries, such as equality-only
queries and simple inequality queries. For more complex queries, an application must
define composite, or manual, indexes.

If a property will never be needed for a query, exclude the property from indexes.
Unnecessarily indexing a property could result in increased latency to achieve
consistency and increased storage costs of index entries.

Avoid having too many composite indexes. Excessive use of composite indexes could
result in increased latency to achieve consistency and increased storage costs of
index entries. If you need to execute ad hoc queries on large datasets without
previously defined indexes, use Google BigQuery.

Do not index properties with monotonically increasing values (such as a NOW()
timestamp). Maintaining such an index could lead to hotspots that impact Cloud
Datastore latency for applications with high read and write rates.

https://cloud.google.com/datastore/docs/concepts/indexes



https://cloud.google.com/datastore/docs/concepts/indexes

Create and delete your composite indexes

e To deploy a composite index:
o Modify the index.yaml configuration file to include all properties
to be indexed.
o Rungcloud datastore create-indexes.
e To delete a composite index:
o Modify the index.yaml configuration file to remove the indexes
you no longer need.

o Rungcloud datastore cleanup-indexes.

Composite indexes are defined in the applications index configuration file
(index.yaml). Composite indexes are viewable but not editable through the Cloud
Platform Console.

To deploy a composite index, modify the index.yaml configuration file to include all
properties you want to index. Run gcloud datastore create-indexes to create the new
index. Depending on how much data is already in Cloud Datastore, creating the
index could take some time. Queries that are run before the index has finished
building will result in an exception.

When you change or remove an index from the index configuration, the original index
is not deleted from Cloud Datastore automatically. When you’re sure that old indexes
are no longer needed, use datastore cleanup-indexes. That command deletes all
indexes for the production Cloud Datastore instance that are not mentioned in the
local version of index.yaml.

For more information, see:
Index Configuration: https://cloud.google.com/datastore/docs/tools/indexconfig



https://cloud.google.com/datastore/docs/tools/indexconfig

Cloud Datastore concepts compared to relational databases

Cloud Datastore:

Is designed to automatically scale to very Concept Cloud Relational
Datastore Database
large data sets by

I A : Category of an Kind Table
o Writing scale by distributing data object
o Reading scale
o . . . One object Entity Row
Does not support join operations, inequality
filtering on multiple properties, or filtering on L“nd(')"l;fe“c‘:' data for | Property Field
data based on results of a subquery.
, . . . Unique ID for an Key Primary Key

Doesn't require entities of the same kind to object

have a consistent property set.

The table shows concepts in Cloud Datastore that you would know from a relational
database.

Key differences between Cloud Datastore and a relational database are that
Datastore is designed to automatically scale to very large data sets, allowing
applications to maintain high performance as they receive more traffic. Datastore
maintains high performance by writing scale by automatically distributing data as
necessary. Datastore also reads scale because the only queries supported are those
whose performance scales with the size of the result set (as opposed to the data set).
So a query whose result set contains 100 entities performs the same whether it
searches over a hundred entities or a million. For this reason, some types of queries
are not supported.

All queries are served by previously built indexes so the types of queries that can be
executed are more restrictive than those allowed on a relational database with SQL.
Cloud Datastore does not include support for join operations, inequality filtering on
multiple properties, or filtering on data based on results of a subquery.

Cloud Datastore doesn't require entities of the same kind to have a consistent
property set (although you can enforce such a requirement in your own application
code).

For more information, see:
https://cloud.google.com/datastore/docs/concepts/overview#comparison with traditio



https://cloud.google.com/datastore/docs/concepts/overview#comparison_with_traditional_databases

nal_databases


https://cloud.google.com/datastore/docs/concepts/overview#comparison_with_traditional_databases

Demo: Explore Cloud Datastore

Create an App Engine application.
Create Cloud Datastore Entities.
Query Cloud Datastore.

Query Cloud Datastore using GQL.

Ao bd -~

—

Google Cloud

Demo 03a: Exploring Cloud Datastore




O

o

O

O

O

O

e Use UTF-8 characters for:

Namespace names

Design your application with these considerations in mind

Klnd names key = client.key('Task', 'sample task') / ‘
Property names
Key names key = client.key('Task', 'sample/task') x ‘

e Avoid forward slash (/) in:

Kind names
Custom key names

e Avoid storing sensitive information in a Cloud Project ID

—

Google Cloud

Always use UTF-8 characters for namespace names, kind names, property names,
and custom key names. Non-UTF-8 characters used in these names can interfere
with Cloud Datastore functionality.

Do not use a forward slash (/) in kind names or custom key names. Forward slashes
in these names could interfere with future functionality.

Avoid storing sensitive information in a Cloud Project ID. A Cloud Project ID might be
retained beyond the life of your project.

The examples show creating a key with kind Task using a key name "sample_task" as

the identifier (recommended) and “sample/task” (not recommended).




Design your application for scale

e The maximum write rate to an entity group is 1/second.
e Avoid high read or write rates to keys that are lexicographically close.
e Gradually ramp up traffic to new Cloud Datastore kinds or portions of
the keyspace.
e Avoid deleting large numbers of Cloud Datastore entities across a
small range of keys.
e For hot Cloud Datastore keys:
o Use sharding to write to a portion of the key range at a higher rate.
o Use replication to read a portion of the key range at a higher rate.

By design, Datastore does not handle high amounts of writes to a single Entity Group.
To design for this characteristic, the recommendation is to shard Entities. If you
update an entity group too rapidly, then your Cloud Datastore writes will have higher
latency, timeouts, and other types of errors—known as contention.

Avoid high read or write rates to Cloud Datastore keys that are lexicographically
close. Because Cloud Datastore is built on top of Google’s NoSQL database
(Bigtable), it is subject to Bigtable’s performance characteristics. Bigtable scales by
sharding rows onto separate tables, and these rows are lexicographically ordered by
key.

Gradually ramp up traffic to new Cloud Datastore kinds or portions of the keyspace.
You should ramp up traffic to new Cloud Datastore kinds gradually in order to give
Bigtable sufficient time to split tablets as the traffic grows.

Avoid deleting large numbers of Cloud Datastore entities across a small range of
keys. Bigtable periodically rewrites its tables to remove deleted entries and to
reorganize your data so that reads and writes are more efficient. This process is
known as a compaction. When performing a large number of deletes for a range of
entities, if those entities have an index on a timestamp field, Datastore will store those
entities closely together. When those entities are all deleted, performance for queries
in that part of the index will be slower until compaction has been completed.

Use sharding or replication for hot Cloud Datastore keys. Replication can be used to



read a portion of the key range at a higher rate than Bigtable permits. Use sharding to
write to a portion of the key range at a higher rate than Bigtable permits.



Use sharding to write to a portion of the key range

: You can shard manually if

; Cust D . the number of writes
: . 1 : : . R
- Customer Kind 2 . exceeds Bigtable limits.
¢ | CustID 3 : :
1
2 50 : : .
3 : Customer1 Kind
100 Cust ID
51 : :
52 z ;
5 £ :
- Datastore and 100 5 5

Customer2 Kind

- Bigtable shard
- automatically.

Sharding splits a single entity into many. Datastore and Bigtable will shard
automatically. If your application requires more writes than Bigtable’s limits, you can
shard manually.

Use sharding to write to a portion of the key range at a higher rate than Bigtable
permits. Sharding breaks up an entity into smaller pieces.

In the example, because of the need to write frequently to a key range in the
Customer kind, it has been sharded to improve performance. The sharding could
theoretically be based on customer region or regions.

For more information, see:

Cloud Datastore Best Practices:
https://cloud.google.com/datastore/docs/best-practices

High Read/Write Rates to a Narrow Key Range:
https://cloud.google.com/datastore/docs/best-practices#high_readwrite_rates to_a_n
arrow_key range



https://cloud.google.com/datastore/docs/best-practices
https://cloud.google.com/datastore/docs/best-practices#high_readwrite_rates_to_a_narrow_key_range
https://cloud.google.com/datastore/docs/best-practices#high_readwrite_rates_to_a_narrow_key_range

When sharding, remember:

e Transaction throughput is limited to 1 write/sec per entity group.
e Split frequently updated entities across multiple kinds.

Keep the following in mind when sharding:
®  Transaction throughput is limited to 1 write/second per entity group.
®  Split frequently updated entities across multiple kinds.

For more information, see:
https://cloud.google.com/datastore/docs/best-practices#sharding and_replication



https://cloud.google.com/datastore/docs/best-practices#sharding_and_replication

Shard counters to avoid contention with high writes

Reduce contention by:

e Building a sharded counter (break the counter up into N different
counters):
o Pick a shard at random to increment the counter
o To know the total count, read all counter shards and sum their
individual counts

Increasing the number of shards will increase the throughput you will have
for increments on your counter!

To update an entity faster than the recommended five times a second, you can shard
counters. To reduce contention (serialized writes stack up and start to time out), you
would build a sharded counter. You would break the counter up into n different
counters. When you want to increment the counter, you pick one of the shards at
random and increment it. To know the total count, read all of the counter shards and
sum up individual counts. Increasing the number of shards will increase the
throughput you will have for increments on your counter.

For more information, see:
https://cloud.google.com/appengine/articles/sharding_counters



https://cloud.google.com/appengine/articles/sharding_counters

Use replication to read a portion of the key range

Use replication to read a portion of the
key range at a higher rate.

) Google CloudPlatform

]

You can store N copies of the same
entity, allowing an N times higher rate

of reads. D © - Pt

Balancing

Config 0 Config 1 Confign

(Config, config-0), (Config, config-1), ... (Config, config-n)

datastore.get(Key("Config", "config-%d" % r))

If your application is bound by read performance, replication may be a better option
for your application.

You can use replication if you need to read a portion of the key range at a higher rate
than Bigtable permits. Using this strategy, you would store N copies of the same
entity, allowing an N times higher rate of reads than is supported by a single entity.

One standard use case (shown in the diagram) is a static config file, which may get
loaded for each request. In this case, your application would have a static number of
config objects (kind Config, named config-<number>), e.g.: (Config, config-0), (Config,
config-1), ... (Config, config-n). When loading, the application would pick a random
number r between 0—n and calls datastore.get(Key("Config", "config-%d" % r)).



—

When designing your application’s operations, remember to:

e Use batch operations for:

o Reads
o Writes
o Deletes

e Roll back failed transactions.
e Use asynchronous calls.

Google Cloud

Use batch operations for your reads, writes, and deletes instead of using single
operations. Batch operations allow you to perform multiple operations with the same
overhead as a single operation.

If a transaction fails, try to roll back the transaction. Having a rollback in place will
minimize retry latency for concurrent requests of the same resources in a transaction.
If an exception occurs during a rollback, it is not necessary to retry the rollback
operation.

Where available, use asynchronous calls to minimize latency impact. For example, if
you have an application that needs the result of a lookup() and the results of a query
before it can render a response, the lookup() and the query do not have a data
dependency, so there is no need to synchronously wait until the lookup() is completed
before initiating the query.



Use query types based on your needs

Keys-only

Projection

Ancestor

Retrieve only the
key

Retrieve specific
properties from

Return strongly
consistent results

e  Return results at an entity Requires your filters, and zero or
lower latency and Retrieve only the data to be more sort orders
cost properties structured for

included in the strong
query filter consistency

Retrieve an entity
kind, zero or more

e  Return results at
lower latency and
cost

SELECT * FROM Task WHERE

__key_ HAS ANCESTOR
KEY (TaskList, 'default')

SELECT priority,

SELECT * FROM Task WHERE
percent_complete FROM Task as

done = FALSE

SELECT __key _ FROM Task

Google Cloud

—

If you need to access only the key from query results, use a keys-only query. A
keys-only query returns results at lower latency and cost than retrieving entire entities.

If you need to access only specific properties from an entity or you need to access
only the properties that are included in the query filter, use a projection query. A
projection query returns results at lower latency and cost than retrieving entire
entities.

If you need strong consistency for your queries, use an ancestor query. Note that
ancestor queries require that you structure your data for strong consistency. An
ancestor query returns strongly consistent results.

You can retrieve an entity kind, zero or more filters, and zero or more sort orders with
an entity query. An entity satisfies the filter if it has a property of the given name
whose value compares to the value specified in the filter specified by the comparison
operation. The example returns Task entities that are marked not done.

Examples of each type of query are provided in GQL. For more information on GQL,
see: https://cloud.google.com/datastore/docs/reference/gql_reference



https://cloud.google.com/datastore/docs/reference/gql_reference

e Don't return skipped entities to
your application

e Still retrieve the entities internally

e Cause your application to be
billed for read operations

Retrieve a query’s results in
convenient batches

Don't incur the overhead of a
query offset

—

Do not use offsets; instead, use cursors. Using an offset only avoids returning the

Improve your query latency by using cursors instead of offsets

Integer Offsets Query Cursors

Google Cloud

skipped entities to your application, but these entities are still retrieved internally. The
skipped entities affect the latency of the query, and your application is billed for the

read operations required to retrieve them.

For more information on query cursors, see:
https://cloud.google.com/appengine/docs/standard/python/datastore/query-cursors



https://cloud.google.com/appengine/docs/standard/python/datastore/query-cursors

Design your keys with these considerations in mind

For keys that use numeric IDs:

e Do not use a negative number.

e Do not use the value 0.

e Get a block of IDs using the allocatelds() method if you want to assign
your own numeric IDs.

e Avoid monotonically increasing values.

For a key that uses a numeric ID, do not use a negative number for the ID and do not
use the value 0 for the ID.

To assign your own numeric IDs manually to the entities you create, have your
application obtain a block of IDs with the allocatelds() method. This will prevent Cloud
Datastore from assigning one of your manual numeric IDs to another entity.

If you assign your own manual numeric ID or custom name to the entities you create,
do not use monotonically increasing values; this creates a Bigtable hotspot, where
writes to new entities are always occurring at the end of the row key space, thereby
preventing Bigtable from effectively distributing writes.

If an application generates large traffic, sequential numbering could lead to hotspots
that impact Cloud Datastore latency. To avoid the issue of sequential numeric IDs,
obtain numeric IDs from the allocatelds() method. The allocatelds() method generates
well-distributed sequences of numeric IDs.



Design your transactions with the following in mind:

e Atomic Can fail when:
o All are applied or
o None are applied
e Max duration: 60 sec.
e |dle expiration: 10 sec. after
30 sec.

e Too many concurrent modifications are
attempted on the same entity group.

e They exceed a resource limit.

e Datastore encounters an internal error.

e Datastore operations in a transaction
operate on more than 25 entity groups.

Make your Cloud Datastore transaction idempotent whenever possible!

Transactions are a set of Datastore operations on one or more entities. They are
guaranteed to be atomic, which means that either all operations in the transaction are
applied or none of them are applied.

Maximum transaction time is 60 seconds, but if a transaction lasts more than 30
seconds, Datastore will terminate it if there is no activity for 10 seconds.

Transactions may fail when too many concurrent modifications are attempted on the
same entity group, transactions exceed a resource limit, datastore encounters an
internal error, or datastore operations in a transaction operate on more than 25 entity
groups.

If your application receives an exception when committing a transaction, it does not
always mean that the transaction failed. You can receive errors in cases where
transactions have been committed and eventually will be applied successfully.
Whenever possible, make your Cloud Datastore transactions idempotent so that if
you repeat a transaction, the end result will be the same. An idempotent operation is
one that has no additional effect if it is called more than once with the same input
parameters.

For more information, see:

Idempotence: https://en.wikipedia.org/wiki/ldempotence
Datastore transactions:
https://cloud.google.com/datastore/docs/concepts/transactions



https://en.wikipedia.org/wiki/Idempotence
https://cloud.google.com/datastore/docs/concepts/transactions

HTTP 4xx or 5xx

) Google Cloud Platform

e

(D —
HTTP 200 0K

Backend App
App Engine

—

Cloud
Datastore

Design your application to handle errors

Error

ALREADY_EXISTS,
FAILED_PRECONDITION,
INVALID_ARGUMENT, NOT_FOUND,
PERMISSION_DENIED,
RESOURCE_EXHAUSTED,
UNAUTHENTICATED

DEADLINE_EXCEEDED, UNAVAILABLE

INTERNAL

ABORTED

Recommended Action

Do not retry without fixing the problem.

Retry using exponential backoff.
Do not retry this request more than once.

For a non-transactional commit:
Retry the request or structure your entities to
reduce contention.

For requests that are part of a transactional
commit:

Retry the entire transaction or structure your
entities to reduce contention.

Google Cloud

When a Google Cloud Datastore request succeeds, the API will return an HTTP 200
OK and the requested data in the body of the response.

Failures return an HTTP 4xx or 5xx with more specific information about the errors
that caused the failure.

Errors should be classified by inspecting the value of the canonical error code. The
table displays recommended actions per error code.

Refer to “Design your application for scale” earlier in this module for approaches you

can use to avoid scaling/contention errors.

For more information, see: https://cloud.google.com/datastore/docs/concepts/errors



https://github.com/googleapis/googleapis/blob/master/google/rpc/code.proto
https://cloud.google.com/datastore/docs/concepts/errors

each lab

Quiz App

Web Ul
R ——
Frontend Service

/questions/add
Users

/client (Take Test)

You will build components of the online Quiz application in

) Google Cloud Platform

/leaderboard

Create

Quiz Questions
Cloud Datastore

Quiz Questions
> e Objects

Cloud Storage

Query

1 O

Publish

Quiz Score and
Feedback Capture
Cloud Pub/Sub

Quiz Response Analysis
(NLP API)
Backend Service

B sqL sQL
Subscribe INSERT SELECT
Quiz Scores and
Feedback
Cloud Spanner




