
© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

© 2017 Google Inc. All rights reserved. Google
and the Google logo are trademarks of Google Inc.
All other company and product names may be
trademarks of the respective companies with
which they are associated.

CLOUD STORAGE, CLOUD PUB/SUB, CLOUD FUNCTIONS, CLOUD DATASTORE,
CLOUD CDN, STACKDRIVER LOGGING, STACKDRIVER MONITORING

Best Practices for Application
Development
Developing Applications with Google Cloud Platform

Version 2.0
Last modified: 2017-09-14

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Build for the cloud
3

Global Reach Scalability and
High Availability

Security

Applications that run in the cloud must be built for global reach, scalability and high
availability, and security.

● Global Reach: Your application should be responsive and accessible to users
across the world.

● Scalability and High Availability: Your application should be able to handle
high traffic volumes reliably. The application architecture should leverage the
capabilities of the underlying cloud platform to scale elastically in response to
changes in load.

● Security: Your application and the underlying infrastructure should implement
security best practices. Depending on the use case, you might be required to
isolate you user data in a specific region for security and compliance reasons.

Images:
https://pixabay.com/en/globe-earth-planet-continents-147715/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Implement best practices to build scalable, more secure, and
highly available applications

4

Best Practices for Scalable,
More Secure, and Highly
Available Applications

Code and
Environment
Management

Scalability and
Reliability

Design and
Development

Migration

In this presentation, you will learn best practices related to code and environment
management, design and development, scalability and reliability, and migration.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Manage your application’s code and environment
5

Code Repository Dependency Management Configuration Settings

Implement the following best practices to manage your application’s code and
environment:

● Store your application’s code in a code repository in a version control system
such as Git or Subversion. This will enable you to track changes to your
source code and set up systems for continuous integration and delivery.

● Do not store external dependencies such as JAR files or external packages in
your code repository. Instead, depending on your application platform,
explicitly declare your dependencies with their versions and install them using
a dependency manager. For example, for a Node.js application, you can
declare your application dependencies in a package.json file and later install
them using the npm install command.

● Separate your application’s configuration settings from your code. Do not store
configuration settings as constants in your source code. Instead, specify
configuration settings as environment variables. This enables you to easily
modify settings between development, test, and production environments.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider implementing microservices
6

Order Inventory

Payment

UI

Shipping

● Codebase becomes
large.

● Packages have tangled
dependencies.

Order Inventory

Payment

UI

Shipping

● Service boundaries
match business
boundaries.

● Codebase is modular.
● Each service can be

independently updated,
deployed, and scaled.

Monolithic application Microservices

Instead of implementing a monolithic application, consider implementing or refactoring
your application as a set of microservices.

In a monolithic application, the codebase becomes bloated over time. It can be
difficult to determine where code needs to be changed. Packages or components of
the application can have tangled dependencies. The entire application needs to be
deployed and tested even if a change is made to a small part of the codebase. This
increases the effort and risk when making feature changes and bug fixes.

Microservices enable you to structure your application components in relation to your
business boundaries. The codebase for each service is modular. It is easy to
determine where code needs to be changed. Each service can be updated and
deployed independently without requiring the customers to change simultaneously.
Each service can be scaled independently depending on load.

Make sure to evaluate the costs and benefits of optimizing and converting a
monolithic application into one that uses a microservices architecture.

Images:
https://material.io/icons/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Asynchronous
calls

Perform asynchronous operations
7

Frontend
Service

Backend
Service

Backend
Service

Keep UI responsive; perform backend
operations asynchronously.

Cloud
Storage

Cloud
Functions

User uploads image.
Cloud Function is triggered.

Cloud Function uploads output
image.

Use event-driven processing.

Remote operations can have unpredictable response times and can make your
application seem slow. Keep the operations in the user thread at a minimum. Perform
backend operations asynchronously.

Use event-driven processing where possible. For example, if your application
processes images that are uploaded by a user, you can use a Google Cloud Storage
bucket to store the uploaded images. You can then implement a Google Cloud
Function that is triggered whenever a new image is uploaded. The Google Cloud
Function processes the image and uploads the results to a different Cloud Storage
location.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Design for loose coupling
8

Order Service Inventory
Service

Message
Queue

Cloud
Pub/Sub

Publishers and subscribers are loosely coupled.

Publisher Subscriber

Customer
Service

Consumers of HTTP APIs should bind loosely
with publisher payloads.

Email Service

GET /api/v1/customer/1234.json

{
 "name": "John Doe",
 "age": 30,
 "email": "john@example.com"
}

Consumer of API

Publisher of API

Design application components so that they are loosely coupled at runtime. Tightly
coupled components can make an application less resilient to failures, spikes in
traffic, and changes to services.

An intermediate component such as a message queue can be used to implement
loose coupling, perform asynchronous processing, and buffer requests in case of
spikes in traffic. You can use a Cloud Pub/Sub topic as a message queue. Publishers
can publish messages to the topic, and subscribers can subscribe to messages from
this topic.

In the context of HTTP API payloads, consumers of HTTP APIs should bind loosely
with the publishers of the API. In the example, the Email service retrieves information
about each customer from the Customer service. The Customer service returns the
customer’s name, age, and email address in its payload. To send an email, the Email
service should only reference the name and email fields in the payload. It should not
attempt to bind with all fields in the payload. This method of loosely binding fields will
enable the publisher to evolve the API and add fields to the payload in a
backwards-compatible manner.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Implement stateless components for scalability
9

Worker
pattern

 Workers perform compute tasks without sharing state.
 Workers can scale up and down reliably.

Cloud
Pub/Sub

Cloud
Functions

IoT data streams into a Pub/Sub topic.
Cloud Function is triggered.

App Component

Compute Env

App Component

Compute Env

Cloud
Pub/Sub

IoT data streams into a
Pub/Sub topic.
App component
subscribes to messages
from topic.

App component
processes, transforms,
and stores data.

Cloud
Datastore

Implement application components so that they do not store state internally or access
a shared state. Accessing a shared state is a common bottleneck for scalability.
Design each application component so that it focuses on compute tasks only. This
approach enables you to use a Worker pattern to add or remove additional instances
of the component for scalability. Application components should start up quickly to
enable efficient scaling and shut down gracefully when they receive a termination
signal.

For example, if your application needs to process streaming data from IoT devices,
you can use a Google Cloud Pub/Sub topic to receive the data. You can then
implement a Google Cloud Function that is triggered whenever a new piece of data
comes in. The Google Cloud Function can process, transform, and store the data.

Alternatively, your application can subscribe to the Pub/Sub topic that receives the
streaming data. Multiple instances of your application can spin up and process the
messages in the topic and split the workload. These instances can automatically be
shut down when there are few messages to process. To enable elastic scaling, you
can use any compute environment, such as Google Compute Engine with Google
Cloud Load Balancing, Google Container Engine, or Google App Engine.

With either approach, you do not have to develop code to manage concurrency or
scaling. Your application scales automatically depending on the workload.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Cache content
10

Application
Component

Cache

Cache hit:
Return data
from cache.

Update
cache with
new results.

Database

Cache miss:
Retrieve data
from database
and recompute
results.

Examples:
Memcached, Redis

Cache application data. Cache frontend content.

Cloud CDN

● Cache load-balanced frontend
content that comes from Compute
Engine VM instance groups.

● Cache static content that is served
from Cloud Storage.

Caching content can improve application performance and lower network latency.

Cache application data that is frequently accessed or that is computationally intensive
to calculate each time.

When a user requests data, the application component should check the cache first. If
data exists in the cache (TTL has not expired), the application should return the
previously cached data. If the data does not exist in the cache or has expired, the
application should retrieve the data from backend data sources and recompute results
as needed. The application should also update the cache with the new value.

In addition to caching application data in a cache such as Memcached or Redis, you
can also use a content delivery network to cache web pages. Cloud Content Delivery
Network can cache load-balanced frontend content that comes from Compute Engine VM
instance groups or static content that is served from Cloud Storage. For more information
about using Cloud CDN, see https://cloud.google.com/cdn/docs/overview.

https://cloud.google.com/cdn/docs/overview

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Implement API gateways to make backend functionality
available to consumer applications

11

Partner,
Consumer, and
Employee Apps

Legacy App

/order

/payment

/account

/history

/creditgateway

/rewards

APIs

Backend application
component on
Google Cloud
Platform

Cloud
Endpoints

Implement API gateways to make backend functionality available to consumer
applications.

You can use Google Cloud Endpoints to develop, deploy, protect and monitor APIs
based on the OpenAPI specification. Further, the API for your application can run on
backends such as Google App Engine, Google Container Engine, or Compute
Engine.

If you have legacy applications that cannot be refactored and moved to the cloud,
consider implementing APIs as a facade or adapter layer. Each consumer can then
invoke these modern APIs to retrieve information from the backend instead of
implementing functionality to communicate using outdated protocols and disparate
interfaces.

Using the Apigee API platform, you can design, secure, analyze, and scale your APIs
for legacy backends. For more information about the Apigee API platform, see:

● Getting Started:
http://docs.apigee.com/api-services/content/what-apigee-edge

● Training: http://academy.apigee.com/index.php

Images:
https://pixabay.com/en/computer-network-router-server-159829/
https://material.io/icons/

http://docs.apigee.com/api-services/content/what-apigee-edge
http://academy.apigee.com/index.php
https://pixabay.com/en/computer-network-router-server-159829/
https://material.io/icons/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use federated identity management
13

Authenticate users by
using external identity
providers.

Firebase Authentication

Sign in with Google

Sign in with Facebook

Sign in with Twitter

Sign in with GitHub

Sign in with email

Delegate user authentication to external identity providers such as Google, Facebook,
Twitter, or GitHub. This will minimize your effort for user administration. With
federated identity management, you do not need to implement, secure, and scale a
proprietary solution for authenticating users.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Implement health-check endpoints
12

Health Monitoring Agent

✓ Storage
✓ Database
✓ Network connections
✓ Other dependencies

/health

HTTP response code
Service available: 200
Service unavailable: 5xx

Stackdriver
Monitoring

Uptime check

It is important to monitor the status of your application and services to ensure that
they are always available and performing optimally. The monitoring data can be used
to automatically alert operations teams as soon as a system begins to fail. Operations
teams can then diagnose and address the issue promptly.

Implement a health-check endpoint for each service. The endpoint handler should
check the health of all dependencies and infrastructure components required for the
service to function properly. For example, the endpoint handler can check the
performance and availability of storage, database, and network connections required
by the service. The endpoint handler should return an HTTP response code of 200 for
a successful health check. If the health check fails, the endpoint handler can return
503 or a more specific response code depending on the error.

Evaluate which dependencies are critical enough to result in a health-check failure.
For example, consider a UI service that displays recommendations in one section of
the web page. The UI is designed to degrade gracefully (hide the recommendations
section) if the recommendations engine is down. With this design, if the
recommendation engine fails, you can report the failure on the health status web
page, but still return a successful health check for the UI service. This approach
ensures that your application continues to receive traffic even if some non-critical
dependencies are unavailable.

A health monitoring agent such as a load balancer or Stackdriver Monitoring can
periodically send requests to the health-check endpoint. Load balancers use health

checks to determine if an application instance is healthy and is capable of receiving
traffic. If the health check fails beyond the threshold that you have defined,
Stackdriver Monitoring can send you an alert automatically.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Set up logging and monitor your application’s performance
15

Stackdriver

App Component
print

App Component
console.log

App Component

Log Events

● Debugging
● Error reporting
● Tracing
● Logs-based metrics
● Monitoring

Treat your logs as event streams. Logs constitute a continuous stream of events that
keep occurring as long as the application is running. Do not manage log files in your
application. Instead, write to an event stream such as stdout and let the underlying
infrastructure collate all events for later analysis and storage. With this approach, you
can set up logs-based metrics and trace requests across different services in your
application.

With Google Stackdriver, you can debug your application, set up error reporting, set
up logging and logs-based metrics, trace requests across services, and monitor
applications running in a multi-cloud environment.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Handle transient and long-lasting errors gracefully
16

Transient errors:
Retry with exponential backoff.

Service availability errors:
Implement a circuit breaker.

When accessing services and resources in a distributed system, applications need to
be resilient to temporary and long-lasting errors.

Resources can sometimes become unavailable due to transient network errors. In this
case, applications should implement retry logic with exponential backoff and fail
gracefully if the errors persist. The Google Cloud Client Libraries retry failed requests
automatically.

When errors are more long-lasting, the application should not waste CPU cycles
attempting to retry the request. In this case, applications should implement a circuit
breaker and handle the failure gracefully.

For errors that are propagated back to the user, consider degrading the application
gracefully instead of explicitly displaying the error message. For example, if the
recommendation engine is down, consider hiding the product recommendations area
on the page instead of displaying error messages every time the page is displayed.

For information about exceptions related to Cloud Client Libraries for Python, see
https://googlecloudplatform.github.io/google-cloud-python/stable/core/modules.html#
module-google.cloud.exceptions.

https://googlecloudplatform.github.io/google-cloud-python/stable/core/modules.html#module-google.cloud.exceptions
https://googlecloudplatform.github.io/google-cloud-python/stable/core/modules.html#module-google.cloud.exceptions

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Consider data sovereignty and compliance requirements
17

EU-U.S. & Swiss-U.S.
Privacy Shield Framework

Some regions and industry segments have strict compliance requirements for data
protection and consumer privacy. For example, European Union’s Data Protection
Directive regulates the processing of personal data. The directive specifies a number
of requirements that companies must meet around protecting personal data.

Review the data protection requirements for the industry segments and the regions
where your users and services will be located. For more information about security
and compliance in Google Cloud Platform, see:

● Google Cloud Platform Security: https://cloud.google.com/security/
● Privacy and Compliance: https://cloud.google.com/security/compliance

Images:
https://cloud.google.com/security/

https://cloud.google.com/security/
https://cloud.google.com/security/compliance
https://cloud.google.com/security/

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Perform high availability testing and develop disaster recovery
plans

17

Testing Production

● Identify failure
scenarios.

● Create disaster
recovery plans
(people,
processes,
tools).

● Perform
tabletop tests.

● Perform canary
testing and
blue/green
deployments.

● Validate your
disaster
recovery plan.

In addition to functional and performance
testing, perform high-availability testing and
develop disaster recovery plans.

Example failure scenarios:
● Connectivity failure
● On-premises data center or other

cloud-provider failure
● GCP zonal or regional failure
● Deployment rollback
● Data corruption caused by network or

application issues

In addition to executing functional and performance testing, execute high-availability
testing. Such testing will enable you to develop robust disaster recovery plans and
perform disaster recovery practice exercises regularly.

Identify failure scenarios and create disaster recovery plans that identify the people,
processes, and tools for disaster recovery. Initially, you can perform tabletop tests.
These are tests in which teams discuss how they would respond in failure scenarios
but do not perform any real actions. This type of test encourages teams to discuss
what they would do in unexpected situations.

Then, simulate failures in your test environment. After you understand the behavior of
your application under failure scenarios, address any problems, and refine your
disaster recovery plan. Then, test the failure scenarios in your production
environment. You can perform canary testing or blue/green deployments on your
production environment. Consider scheduling such testing during a maintenance
window or during off-peak hours to minimize impact.

Consider failure scenarios such as the following:
● Connectivity failure: When VPN and other such connections between the

on-premises data center and GCP fail, traffic should be rerouted through other
redundant routes.

● On-premises data center or other cloud-provider failure: The application and
its environment should continue to function effectively even in the case of an

● on-premises data center outage or an outage with another cloud provider.
● GCP zonal or regional failure: In case of a zone failure or region failure, make

sure that traffic is routed to alternate zones or regions. Zonal failures are
uncommon, and regional failures are extremely rare.

● Deployment rollback: In some cases, you might have to roll back a software
deployment to an older, stable version. Test the rollback procedure.

● Data corruption caused by network or application issues: It is important to
have a process to restore data from backups in case of data corruption caused
by network or application issues.

In each of these failure scenarios, verify the following:
● The appropriate people were notified about the failure in a timely manner.
● Traffic was rerouted using redundant routes.
● Data was not corrupted during the failure or recovery process.
● All services were restored in a timely manner.

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Implement continuous integration and delivery pipelines
19

Code
Repository Build System

Test
Environments

Production
Environment

Commit changes
to code repository.

Build deployment
artifacts and run
unit tests.

Execute integration,
security, and
performance tests.

Monitor
performance.

Continuous Integration

Continuous Delivery

Automation

Deployment
System

Deploy artifacts to test envs.
Deploy successful builds to
production envs.

SecDevOps
Automate security checks

Implement a strong DevOps model with automation to enable continuous integration
and delivery (CI/CD). Automation helps you increase release velocity and reliability.
With a robust CI/CD pipeline, you can test and roll out changes incrementally instead
of making big releases with multiple changes. This approach enables you to lower the
risk of regressions, debug issues quickly, and roll back to the last stable build if
necessary.

In a continuous integration system, developers commit code into a code repository
such as Git. A build system such as Jenkins automatically detects commits to the
repository, triggers builds, and runs unit tests. The build system produces deployment
artifacts for all required runtime environments.

In a continuous delivery system, a deployment system such as Spinnaker
automatically triggers the deployment of builds to test environments. You can
automatically execute integration, security, and performance tests and then deploy
successful builds to your production environment. When rolling out builds to the
production environment, consider performing canary testing or blue/green
deployments to make sure that any unexpected issues do not affect a large number of
users.

You can set up performance metrics and alerts to monitor the application’s
performance in production.

It is important to consider security throughout the continuous integration and delivery

process. With a SecDevOps approach you can automate security checks such as the
following:

● Confirm that most recent and secure versions of third-party software and
dependencies are used

● Scan code for security vulnerabilities
● Confirm that resources have permissions based on principles of least privilege
● Confirm that logs and events sent by services are sent to a central location
● Detect errors in production and roll back to the last stable build

© 2017 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other
company and product names may be trademarks of the respective companies with which they are associated.

Use the strangler pattern to re-architect applications

Strangler pattern: Incrementally replace components of
the old application with new services.

20

Strangler Facade

Legacy Application

New service

Strangler Facade

Legacy
Application

New services

Early Phases of Migration Later Phases of Migration

Consider using the Strangler pattern when re-architecting and migrating large
applications. In the early phases of migration, you might replace smaller components
of the legacy application with newer application components or services. You can
incrementally replace more features of the original application with new services. A
Strangler facade can receive requests and direct them to the old application or new
services. As your implementation evolves, the legacy application is “strangled” by the
new services and no longer required.

This approach minimizes risk by enabling you to learn from each service
implementation without affecting business-critical operations.

The term “strangler” comes from strangler vines. The vines seed and start growing on
the upper branches of fig trees, gradually envelope the tree, and finally kill the tree
that acted as their host.

Images:
https://pixabay.com/en/pie-chart-diagram-3d-graph-pie-153903/
https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/
https://pixabay.com/en/strangler-fig-jungle-trees-forest-453715/

https://pixabay.com/en/pie-chart-diagram-3d-graph-pie-153903/
https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/
https://pixabay.com/en/strangler-fig-jungle-trees-forest-453715/

